首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to identify the cause of toxicity in sediments and suspended matter, a large number of samples with different degrees of contamination was taken at various locations in The Netherlands. Standard acute bioassays were carried out with the bacterium Vibrio fischeri, the rotifer Brachionus calyciflorus and the anostracan Thamnocephalus platyurus. Chronic standard tests were performed using the water flea Daphnia magna and larvae of the midge Chironomus riparius. Some novel bioassays were performed as well. Most toxic effects observed in standard bioassays with sediments from polluted sediments (class 3 and 4 on a scale of 0-4 according to the Dutch criteria) could be partly explained by toxic concentrations of known persistent priority pollutants, mainly heavy metals and occasionally polycyclic aromatic hydrocarbons. In some of the samples, ammonia toxicity was a confounding factor during testing. Suspended matter from the Meuse river at Eijsden, which may be considered as 'new' sediment (pollution class 2), was moderately to highly toxic in almost all bioassays. This could have been associated with a combination of heavy metals, PAHs and ammonia. At two locations from the Lake IJssel area with no apparent persistent pollution, moderate and strong effects were nonetheless observed in invertebrate tests. This might have been due to agricultural run-off of pesticides, which are not routinely measured in sediments. A few effects on V. fischeri in canals and a small stream could not be explained with standard chemical analysis, but seemed associated with the outlets of sewage water treatment plants and industrial effluents. Additional chemical analysis of pore water samples from five selected sediments yielded more identified substances such as phtalates, decanes, cosanes and fragrances, but it was estimated that their contribution to the effects observed on V. fischeri, D. magna and C. riparius was negligible.  相似文献   

2.
The aim of the present study was to evaluate to what degree polycyclic aromatic hydrocarbon (PAH) determines sewage sludge toxicity in relation to Heterocypris incongruens. Six differing sewage sludges with increasing contents of polycyclic aromatic hydrocarbons were selected for the present study. As well as total PAH content, the content of the potentially bioavailable fraction was also determined in the sewage sludges using a method of mild-solvent extraction (with n-butanol). The PAH content was also calculated in the sewage sludge pore water by the equilibrium partitioning method. The total PAH content in the sewage sludges studied were in the range 3.60 to 27.95 mg kg(-1). The contribution of the n-butanol extracted fraction was in the range 38.7 to 75.4%. In the group of individual PAHs, 4- and 5-ring compounds had the highest content in the potentially bioavailable group. H. incongruens mortality in the range 6.7 to 100%, depending both on the sewage sludge and the dose applied. An increase of the sewage sludge dose usually resulted in an increase in toxicity. At the highest dose, a 100% mortality of H. incongruens was found in half of the sludges. The lowest dose, irrespective of the sludge type, caused over 40% growth inhibition. However, the results obtained did not allow for the establishing of an unambiguous relationship between various sludge toxicity levels and the content of potentially bio-available PAHs. In some cases only, the extraction using n-butanol explained the high difference in toxicity despite a slight differentiation in the PAH content.  相似文献   

3.
Persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their persistence, bioaccumulation and toxic effects. In this work the levels of 16 priority PAHs were determined in water, pore water, sediment, soil and vegetable samples from Minjiang River Estuary, China. Total PAH concentrations varied from 9.9 to 474 microg/l in water, 82.1 to 239 microg/l in pore water, 112 to 877 ng/g dry wt. in surficial sediments, 128 to 465 ng/g dry wt. in soil and 8600 to 111,000 ng/g dry wt. in Chinese vegetables. Overall, the mean concentrations of PAHs were present in higher levels in pore water than that in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. Contamination was dominated by high molecular mass PAH compounds in all samples, indicating combustion-derived sources (for example, pyrolysis at high temperature). The levels of PAHs in water and vegetable were relatively high in comparison to other studies, although PAHs in sediment and soil were comparable to those found in many other similar environments. The ratios of selected PAHs indicated again that PAHs in Minjiang River Estuary were mainly derived from incomplete combustion of fossil fuel.  相似文献   

4.
Doong RA  Lin YT 《Water research》2004,38(7):1733-1744
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected from 12 locations in Gao-ping River, Taiwan were analyzed. Molecular ratios and principal component analysis (PCA) were used to characterize the possible pollution sources. Concentrations of total 16 PAHs (SigmaPAHs) in water samples ranged from below method detection limits (相似文献   

5.
Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia   总被引:3,自引:0,他引:3  
Sediment cores from the Fraser estuary, Vancouver Harbour and Strait of Georgia, suspended sediment samples from the Fraser River and sediment grabs from Vancouver Harbour have been analyzed for alkanes and parent and alkyl PAHs (polycyclic aromatic hydrocarbons). Principal components analysis (PCA) clearly distinguishes mixed sources by separating parent PAHs according to molecular size, and separating alkyl substituted PAHs from higher plant PAHs. We find the Fraser River to be the predominant source for natural and anthropogenic hydrocarbons to the Strait of Georgia. The natural hydrocarbon burden from the Fraser River is augmented principally by petroleum hydrocarbons and combustion PAHs from Vancouver. Contaminated sediments from Vancouver Harbour very likely have also been transported to a major ocean disposal site off the Fraser estuary. Petroleum alkanes, which dominate Fraser River suspended sediment samples, are lost by processes such as dissolution or microbial degradation during transport and sedimentation, while PAHs from the river are delivered essentially unchanged to sediments in the strait. Hydrocarbon composition undergoes little change with depth at a reference location in the Strait of Georgia, indicating that PAH inputs have changed very little since the early part of this century. In Vancouver Harbour the low rate of sediment accumulation coupled with surface mixing has led to the retention of contaminant PAHs within the surface mixed layer, while the rapid delivery of sediments from the Fraser River has buried contaminant PAHs from historical ocean disposal in the Strait of Georgia.  相似文献   

6.
This paper reports the occurrence of polyaromatic hydrocarbons (PAHs) deposition inferred from a sediment core of an Andean lake in south central Chile. Sediments were carefully collected from one of the deepest section of the lake and sliced every 1 cm. The samples were analyzed for PAHs, (137)Cs, (210)Pb, organic carbon and grain-size. The stratigraphic chronology and the sedimentation rates were estimated using the sedimentary signature left by the (137)Cs and (210)Pb fallout as temporal markers. PAHs were quantified by HPLC-fluorescence detection (HPLC-Fluorescence). 15 priority EPA PAHs were analyzed in this study. Based on these results, PAH deposition over the last 50 years was estimated (a period characterized by an important intervention in the area). PAH concentration ranged from 226 to 620 ng g(-1) d.w. The highest concentrations of PAHs were found in the core's bottom. The PAH profile is dominated by the presence of perylene indicating a natural source of PAH. In addition, two clear PAH deposition periods could be determined: the most recent with two-four rings PAHs, the older one with five-seven rings predomination. Determined fluxes where 71 to 972 microg m(-2) year(-1), dominated by perylene deposition. PAH levels and fluxes are lower compared to the levels found in sediments from remote lakes in Europe and North America. It is concluded that the main source of PAHs into the Laja Lake sediments are of natural origin.  相似文献   

7.
The distribution and historical changes of polycyclic aromatic hydrocarbons (PAHs) contamination in mangrove sediments in Hong Kong SAR were investigated. Surface sediments (2-3 cm) collected from four mangrove swamps exhibited significant spatial variations in concentrations of total PAH (with SigmaPAHs ranging from 56 to 3758 ng g(-1) dry wt), as well as the composition of 16 USEPA priority PAH compounds. Within a small swamp with an area of 0.68 ha, the total PAH concentrations also differed from sampling site to site, indicating that the PAH contamination is localized and confined to a very small area within the same swamp. Discharges from municipal and industrial wastewater, urban runoff, oil leakage from boats and ships, and accidental oil spill are possible sources of the PAH contamination. The sediment depth profiles reveal that the surface sediment layer (0-5 cm) had lower total PAH concentrations than that in the bottom layer (15-20 cm), and PAH composition also changed with the sediment layers. Based on the estimated annual sediment deposition rate in Hong Kong SAR of around 0.4-0.5 cm, the present findings suggest that the PAH contamination was most serious between 1958 and 1979 but started to decline thereafter. Such decline was probably due to changes in petroleum usage in urban areas and a better control of wastewater discharges from 1980 onwards in this region.  相似文献   

8.
The atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) was investigated in Hungary by analyzing a moss (Hypnum cupressiforme) species as a bioindicator. In the autumn of 1997, samples were collected at 29 sites distributed across Hungary. The concentrations of total PAH at these sites were in the range of 0.1567-10.45 x 10(4) microg kg(-1) with a mean value of 1.87 x 10(4) microg kg(-1). More than 99% of the total PAHs atmospheric deposition were low molecular weight PAHs (up to 3 ring compounds). The total PAH values showed no correlation with metal concentrations. However, most of the sites in this region showed a positive linear relationship between PAHs levels and traffic volume (r2 = 0.83; P < 0.001) while no relationship existed between PAH levels and population (r2 = 0.01; P > 0.1). Atmospheric deposition of PAHs at different regions in Hungary may be due to incomplete combustion of fuel. The total concentrations of PAHs were compared to the PAH levels in vegetation samples collected from different regions around the world. The highest PAHs concentrations accumulated were found in Hypnum cupressiforme than other vegetation species. A greater affinity for PAH compounds by Hypnum cupressiforme than other moss species probably caused larger amounts of accumulation. A relationship between accumulations of PAH compounds in Hypnum cupressiforme and octanol-air partition coefficients was obtained and is briefly discussed.  相似文献   

9.
Source apportionment of PAHs in dated sediments from the Black River,Ohio   总被引:10,自引:0,他引:10  
Black River, OH, is contaminated with polycyclic aromatic hydrocarbons (PAHs) from coke ovens of a US Steel Corp. Plant. Closing of a coking plant in 1983 and environmental dredging of the sediments during 1989 and 1990 has reduced the PAH levels significantly. This study quantifies the decrease, and consider source apportionment of PAHs in Black River sediments using chemical mass balance modeling. Five vibra cores collected in 1998 and dated using 210Pb and 137Cs, were analyzed for 18 PAHs. The cores had total PAH concentrations between 250 and 0.10 ppm. PAH maxima occur in 1949, 1969, in accordance with regional historical inputs (core BR4), and in 1991 due to remediation (BR6). Coke oven emissions (CO), highway dust (HWY), and wood burning (WB) are likely sources. The CO source (6-92% of total PAHs) is maximal in 1954, and again in 1992-1994 due to the exposure and redistribution of older contaminated sediments during dredging, and decreases thereafter. There is minimal CO content in 1985 (BR4), 2 yr after closure of the coking plant. The HWY contribution (2-86%) is high during 1969-1988, and increases again after 1993. The WB source is less than 23%, and exhibits a minimum (2%) around 1979 (BR4). There is evidence of aerobic biodegradation or photolysis in the sediment of phenanthrene (PhA) at PhA concentrations >500 ppb.  相似文献   

10.
Muscle concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were determined in rabbitfish Siganus oramin collected from Victoria Harbour and its vicinity, Hong Kong from 2004 to 2007. Spatially, relatively higher levels of ∑PAH (1.05-4.26 μg g− 1) and ∑PCB (45.1-76.9 ng g− 1) were determined in the central and western sites inside the harbour. Temporally, upward trend of ∑PAH, accompanied with a proportion shift from high molecular weight to low molecular weight PAHs, was detected during the three-year study period, suggesting a heavier marine traffic in Victoria Harbour and its western region. However, human health risk assessment based on five individual PAHs indicated that PAHs in fish muscles posed minimal health risk through consumption. In contrast, a downward trend of ∑PCB was registered as the open use of PCBs has been banned. Despite this, the level of ∑PCB in fish muscles still posed a health risk on the local people who have a high fish consumption rate. While seasonal influences on ∑PAH/∑PCB accumulation in S. oramin seemed to be negligible, our findings in S. oramin were in line with the established PAH and PCB levels in sediments and/or mussels from the harbour, suggesting S. oramin can be used as a model fish species for monitoring PAHs and PCBs in the region.  相似文献   

11.
Estimates of the potential acute toxicity of PAH residues to aquatic organisms in UK estuarine sediments using the equilibrium partitioning-toxic unit (EqP-TU) approach indicate that sediments from the Clyde and Mersey estuaries and Southampton Water will have the highest mean toxicities. The PAH residues probably originate from a combination of specific industrial sources and inputs from surrounding conurbations via combustion and run-off. Maximum sediment toxicities were evident at specific locations in Southampton Water near a chemical plant outfall and in sediments in docks on the Wear and Clyde. The limitations of the EqP-TU approach, particularly with regard to the potential for the over estimation of toxicity due to high levels of non-bioavailable high molecular weight PAHs occluded in combustion particles are discussed.  相似文献   

12.
Surface marine sediments collected from 8 sampling sites within the Rovinj coastal area, Northern Adriatic, Croatia, were used for determining priority pollutant polycyclic aromatic hydrocarbons (PAHs) and toxic/genotoxic potential of sediment organic extracts. Total PAH concentrations ranged from 32 microg/kg (protected area) to 13.2 mg/kg dry weight (harbor) and showed clear differences between pristine, urban industrial and harbor areas. PAHs distribution revealed their pyrogenic origin with some biogenic influence in harbor. At all sampling sites sediment extracts showed toxic potential that was consistent with the sediment type. No correlation between toxicity measured by Microtox assay and concentrations of individual or total PAHs was found. Noncytotoxic dose of sediment extracts showed no genotoxic potential in bacterial umu-test. DNA damage is positively related to total PAHs at 4 sampling sites (S-1, S-2, S-3, S-6), but the highest DNA damage was not observed at the site with the highest total sediment PAH content (S-5).  相似文献   

13.
Chen B  Xuan X  Zhu L  Wang J  Gao Y  Yang K  Shen X  Lou B 《Water research》2004,38(16):3558-3568
Ten polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in 17 surface water samples and 11 sediments of four water bodies, and 3 soils near the water-body bank in Hangzhou, China in December 2002. It was observed that the sum of PAHs concentrations ranged from 0.989 to 9.663 microg/L in surface waters, from 132.7 to 7343 ng/g dry weight in sediments, and from 59.71 to 615.8 ng/g dry weight in soils. The composition pattern of PAHs by ring size in water, sediment and soil were surveyed. Three-ring PAHs were dominated in surface waters and soils, meanwhile sediments were mostly dominated by four-ring PAHs. Furthermore, PAHs apparent distribution coefficients (K(d)) and solid f(oc)-normalized K(d) (e.g. K(oc)= K(d) / f(oc)) were calculated. The relationship between logK(oc) and logK(ow) of PAHs for field data on sediments and predicted values were compared. The sources of PAHs in different water bodies were evaluated by comparison of K (oc) values in sediments of the river downstream with that in soils. Hangzhou section of the Great Canal was heavily polluted by PAHs released from industrial wastewater in the past and now PAHs in sediment may serve as sources of PAHs in surface water. PAHs in Qiantang River were contributed from soil runoff. Municipal road runoff was mostly contributed to West Lake PAHs.  相似文献   

14.
PAH concentration and distribution has been examined in surface sediments samples from the Kara Sea, Russia. The study includes 13 samples from the South-eastern Kara Sea shelf, one sample from the south-western part of the sea, 4 samples from the Baydaratskaya Bay, 5 samples from the Gulf of Ob and 4 samples from the Yenisei Bay, collected in August-September 1993-1994. Cluster analysis and principal component analysis (PCA) were used to identify common patterns and possible sources of PAHs. The total PAH concentration (sum of two- to six-ring aromatic hydrocarbons) in the Kara Sea sediments was generally lower than in the Barents Sea sediments and comparable to the levels in the Pechora and White seas. Two- and three-ring aromatic hydrocarbons predominated in Kara Sea sediments, which indicate a relatively stronger petrogenic origin than that in the adjacent seas. The highest total PAH concentrations within the Kara Sea were found in sediments from the Yenisei Bay and in the South-western part of the Kara Sea in the Eastern Novaya Zemlya Trough. The PAHs of the Yenisei Bay sediments were dominated by perylene and PAHs of petrogenic origin, but had also a strong indication of PAHs of pyrogenic origin. The dominating PAH group in the South-western part of the Kara Sea were four- to six-ring aromatic hydrocarbons, indicating pyrogenic origin. Perylene levels were high in all the Kara Sea samples, and highest levels were found in areas of strong terrigenous influence. The most probable source is decaying peat products being transported to the Kara Sea by both large and small rivers.  相似文献   

15.
Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during the interval time between samplings. Results showed that the present PAH contamination level of Jubany Station is relatively low compared to other reported cases in Antarctica but also suggests that an increase in rain and in thawing processes caused by the global warming could result in an important soil-associated PAH mobilization with unpredictable consequences for the biota of Potter Cove.  相似文献   

16.
Surface sediment samples from the Guba Penchenga and adjacent areas: Varangerfjord, Guba Malaya Volokovaya and Guba Bol'shaya Volokovaya (south-western Barents Sea) collected in March-April 1997 were analysed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated pesticides: p,p'-DDT, p,p'-DDE, p,p'-DDD, alpha- and gamma-HCH, and hexachlorobenzene (HCB). Mean summation operator PAH (sum of the two- to six-ring PAHs) concentration in sediments from the Guba Pechenga (1481 ng/g dry wt.) was significantly higher than in sediments from adjacent areas (252 ng/g dry wt.), where PAH contamination levels were similar to reported for unpolluted sediments of the northern Norway fjords and open parts of the Barents Sea. Differences between HCB levels as well as summation operator HCH (sum of alpha- and gamma-HCH) levels found in Guba Pechenga sediments and adjacent area sediments were not significant. Concentrations of these contaminants varied in ranges 0.28-1.76 and 0.05-0.68 ng/g dry wt., respectively, and were consistent with literature data on PAH levels in sediments from the northern Norway harbours, Kola Bay (Russia) and south-eastern part of the Barents Sea. Average total DDT concentration in Guba Pechenga sediments (10.5 ng/g dry wt.) was one and 2-3 orders higher than those found in sediments from the Pechora Sea and from the seas of eastern Arctic, respectively, however, it was comparable with DDT levels reported for harbours of northern Norway and Kola Bay. Significant difference between total DDT levels in Guba Pechenga and in the adjacent areas (mean 1.8 ng/g) was found. Among compounds of DDT family, p,p'-DDT isomer prevailed in all sediment samples indicating a possible local 'fresh' DDT source. Mean summation operator PCB (sum of PCB-28, 31, 52, 101, 118, 105, 153, 138, 156, 180, 209) concentration in the Guba Pechenga sediments (12.8 ng/g dry wt.) was significantly higher than in sediments of adjacent areas (2.1 ng/g dry wt.), but it was lower in comparison with summation operator PCB levels reported for the northern Norway harbours and Kola Bay sediments. The highest levels of contaminants were found in sediments collected close to the Liinakhamari harbour. The origin of both PAHs and OCs in the Guba Pechenga sediments is a combination of local sources and long-range transport from lower latitudes.  相似文献   

17.
PAH and metal mixtures in New Orleans soils and sediments.   总被引:16,自引:0,他引:16  
The purpose of this study is to determine the degree of PAH contamination and the association of PAHs with inorganic substances in soils and sediments of New Orleans. Bonnet Carré Spillway (BCS) (n = 5) provides modern baseline data, while urban soil samples (CTY) (n = 27) and sediment samples from Bayou St. John (BSJ) (n = 11) provide experimental data for New Orleans. Soil samples were collected from the top 2.5 cm of the surface, air-dried, and sieved (2 mm). Sediments samples were collected with a Wildco-Ekman bottom dredge, air-dried and finely ground. Accelerated solvent extraction (ASE) was used to release PAHs from the samples and analysis was conducted with gas chromatography-mass spectrometry (GC-MS). Metals were extracted using a 5:1 ratio of 1 mol/L nitric acid (room temperature) for soil and sediment samples, shaken for 2 h, centrifuged (1000 x g for 15 min) and filtered. Metal analysis was done by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Mann-Whitney tests show PAH differences (P < 0.001). Ranking of total PAHs is, BSJ sediments (10.3 mg/kg) > CTY soils (3.7 mg/kg) > BCS alluvium (0.28 mg/kg). The sum of the metals are similar for BSJ sediments (698 mg/kg) and CTY soils (679 mg/kg) and significantly lower for BCS (189 mg/kg). Manganese of these samples is similar for each site. For paired samples, Pearson Product Moment Correlation tests reveal that many PAHs are strongly associated with each other at all locations. For BCS alluvium and BSJ sediments, total PAHs are not significantly associated with total metals. For CTY, most pairs of metals are significantly associated, and total soil PAHs are strongly associated with total soil metals (correlation 0.78, P = 4.9 x 10(-4)). The linear model, total soil PAH = 136.3 + 6.25 (total soil metals) forms the basis for a predicted PAH map of New Orleans. Previous empirical research demonstrates an association between soil lead and children's lead exposure. This study indicates that PAHs are part of the soil mixture of accumulated substances and by-products of industrial society that presents exposure potential in cities.  相似文献   

18.
The green alga, Scenedesmus subspicatus was exposed for 7 days to a series of PAHs (polyaromatic hydrocarbons) of increased molecular weight from two to five rings [naphthalene (Nap), anthracene (Ant), phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP)]. The toxicity measured as population growth inhibition by individual PAH to the S. subspicatus followed the order: BaP>Pyr>Ant>Phe>Nap. These results confirmed that the toxicity potential of PAHs seems to be strongly influenced by their physico-chemical properties (aqueous solubility, K(ow), coefficient of volatilization, etc.) and the conditions of algae culture (light, presence of nitrate ions, etc.). Consequently, Nap, Phe and Ant having low k(ow) values and low coefficient of volatilization values were less toxic than BaP with the highest k(ow) value, indicating for example why Nap with the lowest EC(50) value was nearly 2 x 10(5) times lower than that of BaP. Moreover, nitrate ions seemed to act directly on the degree of hydroxylated radical reactivity of PAHs, since BaP always remained the most toxic of the compounds tested. The results were also agreed with the QSAR model for toxicity prediction of PAHs to many aquatic organisms.  相似文献   

19.
Phyu YL  St J Warne M  Lim RP 《Water research》2005,39(12):2738-2746
The toxicity and bioavailability of molinate to Vibrio fischeri (Microtox((R))) were determined in both laboratory and river water in the absence and presence of sediment after 0, 24, 48, 72 and 96-h exposure. The bioavailability of molinate, expressed as 5min EC50s (bioluminescence) and their fiducial limits calculated using initial measured concentrations, to V. fischeri in laboratory water in the absence and presence of sediment ranged from 1.8 (1.7-2.1) to 3.6 (3.5-3.7) mgL(-1) and 1.3 (1.2-1.4) to 4.2 (3.5-4.5) mgL(-1), respectively. The corresponding values in river water and river water plus sediment were 1.7 (1.6-1.8) to 3.8 (3.6-4.1) and 1.3 (1.3-1.4) to 4.6 (4.2-4.9) mgL(-1), respectively. River water did not significantly (P>0.05) reduce the bioavailability of molinate to V. fischeri compared to that of laboratory water. However, the presence of sediment significantly (P<0.05) reduced the bioavailability of molinate to V. fischeri in both waters. The exposure time also significantly (P<0.05) reduced the bioavailability of molinate to V. fischeri in both waters in the presence and absence of sediment. The type of water did not significantly (P>0.05) affect the loss of molinate during the 96-h exposure period. However, the presence of sediment significantly (P<0.01) increased the loss of molinate from the test solutions, probably by binding to the sediment particles. Exposure period and concentration levels significantly (P<0.05) affected the loss of the herbicides over the 96h.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) in two (210)Pb dated sediment cores from the coastal East China Sea, strongly influenced by the discharge from the Yangtze River, were determined to help to reconstruct the economic development over the past century in East China. The variations in PAH concentrations and fluxes in the sediment cores were primarily due to energy structure change, severe floods and dam construction activities. The impact on PAHs by the river discharge overwhelmed the atmospheric depositions. The profiles of PAH fluxes and concentrations as well as compositions in the cores revealed the transformation from an agricultural economy to an industrial one especially after the 1990s' in the region. PAHs in the study area were dominated by pyrolytic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号