首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 173 毫秒
1.
舟山某码头钢管桩采取牺牲阳极阴极保护已10余年。通过检测阳极的表面形貌,计算阳极使用寿命,测量保护电位和检查钢管桩腐蚀状况,对牺牲阳极保护效果进行了评价和分析。结果表明,10年间钢管桩受到了充分有效的保护,阳极剩余寿命在10年以上,实际使用寿命将大于设计寿命。  相似文献   

2.
珠江口某改造码头钢桩在淡海水环境中采取牺牲阳极阴极保护10余年。通过测试码头所处环境腐蚀因素,水下拍摄测量阳极,计算阳极使用寿命,测量保护电位,检查钢桩腐蚀状况等措施,对码头阴极保护效果进行评价和分析。  相似文献   

3.
针对珠海高栏港某高桩码头,开展了耐久性监测系统的设计与搭建.根据高桩码头的特点及工程环境,提出了检测系统的设计原则,通过埋设阳极梯传感器、参比电极和多功能耐久性监测传感器,以现场采集与无线采集并行的方式,实现各种监测数据的远程、无人、自动化采集,以及各种监测结果的原位对比.  相似文献   

4.
为降低码头钢管桩在海洋环境下的腐蚀速率,延长使用寿命,结合海洋环境腐蚀的机理,分析了码头钢管桩腐蚀的原因及腐蚀特点。通过分析筛选得出:在阴极保护方法中,牺牲阳极保护法相比强制电流保护法,投入小、稳定性好,更适用于码头钢管桩阴极保护;在外防腐层方面,涂层防腐由于施工复杂、成本高不适用码头钢管桩防腐,而采用包覆改性聚乙烯防腐带的方法具有施工简单,投入小,防腐效果好的特点。所以,采用牺牲阳极保护与包覆改性聚乙烯防腐带联合防腐法比较适合码头钢管桩的防腐。  相似文献   

5.
研究了黎巴嫩的黎波里钢板桩码头的牺牲阳极保护系统,解决了该海域码头不同区域中钢管桩与钢板桩的平均保护电流密度取值问题。通过现场试验发现,对于码头迎水面的平均保护电流密度值取0.060 A·m-2较为合适,码头回填区域的平均保护电流密度值取0.030 A·m-2较为合适,海泥区的平均保护电流密度值取0.025 A·m-2较为合适。  相似文献   

6.
崇启大桥钢管桩投入使用以来,从未对钢管桩防腐蚀进行过系统的检测。通过钢管桩上挂片检测、阳极外观检查、阳极消耗量检测等来评价大桥钢管桩的使用现状及防腐蚀效果。结果表明,服役8年多后,崇启大桥的钢管桩被保护极好,牺牲阳极尚可使用50余年,其余阳极的剩余寿命基本达100年甚至200年以上。  相似文献   

7.
现有用于长输管道阴极保护的检测桩仅检测管道电位,通常只需一个检测点,用于牺牲阳极方式的检测桩应能全面检测包括电位、电流、接地电阻等各项参数,面对钢管检测桩盗损严重的问题,特殊设计的防盗型检测桩较好地满足了运行的要求.  相似文献   

8.
黄永昌 《腐蚀与防护》2000,21(8):380-384
1概述 港湾设施种类繁多,有固定式结构,如钢板桩和钢管桩建造的码头岸壁、栈桥码头以及船坞、闸门等,也有浮动式结构,如趸船、浮船坞、浮鼓等.这些钢结构设施在长达数十年的设计使用寿命期间遭受水介质和潮湿大气的腐蚀,尤其是在海洋环境下的腐蚀,其平均腐蚀速率高达0.3~0.4mm/a,局部腐蚀速率达到1mm/a,使钢桩穿孔,甚至断裂,严重影响到它们的安全使用.采用阴极保护或者与涂料一起进行联合保护是港湾设施防蚀最常采用的手段.受阴极保护的钢结构的腐蚀速率可降低到0.02mm/a以下,使用寿命延长一倍以上,所需的阴极保护费用仅为这些设施总造价的2%~5%左右,因而非常经济[1].以前在码头保护时大都采用外加电流系统,近二十年来由于铝合金牺牲阳极的成功开发,也有采用牺牲阳极系统的.  相似文献   

9.
本文报道在淡水环境中采用铝合金和镁合金复合式牺牲阳极对钢管桩进行阴极保护的可行性研究。分别检测了安装3组、4组或5组复合牺牲阳极后,钢管桩1天和7天的极化电位,评估了该方案的实际保护效果,确定了较为合理的镁合金与铝合金牺牲阳极的用量和比例。  相似文献   

10.
承台钢底板与钢管桩的绝缘较差时,钢底板将会吸收钢管桩的阴极保护电流,加速了牺牲阳极的消耗,最终牺牲阳极的寿命达不到设计年限,影响阴极保护效果.文章介绍了承台钢底板牺牲阳极阴极保护设计及施工.经检测,保护电位满足设计要求.  相似文献   

11.
本文对钢质石油储罐的腐蚀机理、因素进行了分析,介绍了牺牲阳极阴极保护的原理,对1座10000m3的钢质石油储罐罐底外壁进行了牺牲阳极阴极保护设计,并对其保护效果进行了检验。结果显示该储罐实施牺牲阳极保护后,牺牲阳极保持较低的工作电位,使罐底外壁得到相应保护,达到了设计技术要求,有效减缓罐底外壁的腐蚀速率。  相似文献   

12.
Corrosion of steel embedded in concrete structures and bridges is prevented using cathodic protection. Majority of the structures protected employ impressed current system. Use of sacrificial system for the protection of steel in concrete is not as widely employed. The use of magnesium anodes for the above purpose is very limited. This study has been carried out with a view to analyse the use of magnesium alloy anode for the cathodic protection of steel embedded in concrete.Magnesium alloy anode, designed for three years life, was installed at the center of reinforced concrete slab, containing 3.5% sodium chloride with respect to weight of cement, for cathodic protection. Potential of the embedded steel and the current flowing between the anode and the steel were monitored, plotted and analyzed. Chloride concentration of concrete at different locations, for different timings, were also determined and analyzed.The magnesium anode was found to shift the potential of the steel to more negative potentials initially, at all distances and later towards less negative potentials. The chloride concentration was found to decrease at all the locations with increase in time. The mechanism of cathodic protection with the sacrificial anode could be correlated to the removal of corrosive ions such as chloride from the vicinity of steel.  相似文献   

13.
张国庆  张伟  钱思成  于萱 《表面技术》2022,51(5):177-185
目的 研究对比了3种不同配方Al-Zn-In合金阳极在南海环境条件下的腐蚀形貌及电化学容量、电化学效率等性能参数,为深海工程装备的阴极防护设计提供可靠的参考依据。方法 通过在我国南海1200m深海试验架上搭载阳极阴极保护测试装置及数据采集、存储系统,采用自放电测试(Free Running Test,FRT)试验方法研究了阳极在110 d长周期条件下的电化学性能,采用超景深三维显微镜对其表面腐蚀形貌进行了观测。结果 1#—3#阳极下水后工作电位均快速活化,整个试验阶段,平均工作电位分别为-1.029、-1.033、-1.098 V(Ag/AgCl/海水);电化学效率分别为81.62%、78.02%、87.90%。仅自主设计的3#配方阳极的开路电位和电化学效率达到了UNE-EN 12496-2013阴极保护设计标准的要求。结论 与模拟深海环境下的恒电流测试(Galvanostatic Test,GST)短期试验(4 d)结果相比,同一配方阳极在深海110 d长周期FRT测试条件下的电化学效率分别降低15.13%,18.87%和8.14%。长周期FRT试验更接近实际阳极服役状态,可为深海阴...  相似文献   

14.
In this paper, a sacrificial anode cathodic protection problem of 2D steel storage tank was simulated using boundary element method. The tank was protected by a zinc anode located directly on structure wall. Data obtained from potentiodynamic measurements were used as boundary condition. In this study, optimum location of the anode was determined, and the influence of anode length and paint defect on the level of protection provided by system were investigated. This study showed that boundary element method is beneficial in modeling and analyzing cathodic protection systems and calculated results were consistent with expectations from the basic corrosion concepts.  相似文献   

15.
对于中碳钢在海水中作为牺牲阳极阴极保护紫铜而建立了6个二维物理模型.对Laplace方程进行了弱形式推导以便于有限元法计算.用有限元法模拟计算了各物理模型阴极保护体系的电位分布,并进行实验验证.结果表明,二维有限元法能很好地模拟该阴极保护体系的电位分布.在小范围内中碳钢和紫铜电偶对的距离远近对电位分布影响不大.各模型中具有代表性的X轴、Y轴方向的电位模拟计算值与实测值接近.中碳钢阴极保护紫铜具有可行性,有限元法计算能够为其阴极保护设计提供依据.  相似文献   

16.
在明确了阴极保护的管道条件前提下,文章简述了埋地钢制管道牺牲阳极阴极保护基本原理,确定了应采用的阳极材料;给出了规范要求和设计参数、以及镁阳极接地电阻的简化计算公式;明确了不宜使用钢套管及对水泥套管内管道采取的保护措施;给出了阳极地床填包料的组分。  相似文献   

17.
Cathodic protection is an effective method to control the corrosion of underground pipelines and submerged structures. In the present work, high phosphorus containing pig iron was utilized as sacrificial anode for cathodic protection of underground mild steel plates and the results were compared with that of a commercially pure magnesium sacrificial anode. Driving potential and current between the galvanically coupled sacrificial anodes and mild steel plates were continuously monitored in real time for one month. Microstructure and morphology of the corrosion products formed on the surface of pig iron, magnesium sacrificial anodes and mild steel plates were observed with the help of optical microscope and scanning electron microscopy, and phase identification were performed using x-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The distribution of phosphorus in the pig iron matrix and soluble rust formation on the surface of pig iron under buried condition were critical from the point of sacrificial effect, indicating the possible scientific reasons for high phosphorous pig iron to be used as sacrificial anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号