首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this paper is to develop a finite element model for 3D elastic–plastic frictional contact problem of Cosserat materials. Because 3D elastic–plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic–plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.  相似文献   

2.
解兆谦  张洪武  陈飙松 《工程力学》2012,29(12):370-376,384
基于参变量变分原理,该文发展了三维Cosserat连续体模型弹塑性有限元分析的二次规划算法。由于Cosserat连续体模型的本构方程中存在材料内尺度参数,该模型可以解决经典连续介质理论在分析应变软化问题时病态的有限元网格依赖性问题。数值结果表明所发展的三维Cosserat连续介质弹塑性有限元模型可以有效的模拟应变局部化现象并且该算法具有很好的数值稳定性,同时获得的数值结果具有良好的非网格依赖性。  相似文献   

3.
A comparison between the recently developed Cosserat brick element (see [9]) and other standard elements known from the literature is presented in this paper. The Cosserat brick element uses a director vector formulation based on the theory of a Cosserat point. The strain energy for a hyperelastic element is split additively into parts for homogeneous and inhomogeneous deformations respectively. The kinetic response due to inhomogeneous deformations uses constitutive constants that are determined by analytical solutions of a rectangular parallelepiped to the deformation modes of bending, torsion and hourglassing. Standard tests are performed which typically exhibit hourglassing or locking for many other finite elements. These tests include problems for beam and plate bending, shell structures and nearly incompressible materials, as well as for buckling under high pressure loads. For all these critical tests the Cosserat brick element exhibits robustness and reliability. Moreover, it does not depend on user-tuned stabilization parameters. Thus, it shows promise of being a truly user-friendly element for problems in nonlinear elasticity.  相似文献   

4.
经典连续介质理论的粘塑性本构关系缺乏材料尺度的相关性,难以表征颗粒材料流变的尺寸效应,而Cosserat连续体中的内禀特征长度为刻画材料的尺寸效应提供了一种可能途径。该文旨在Cosserat连续体的理论框架下发展Perzyna粘塑性模型,以探讨颗粒材料流变的尺寸效应与影响机制。首先基于Drucker-Prager屈服准则导出了Cosserat连续体粘塑性模型的一致性算法,获得了过应力本构方程积分算法与一致切向模量的封闭形式,并在ABAQUS二次平台上采用用户自定义单元(UEL)予以程序实现。有限元数值算例模拟了软岩试样的三轴压缩蠕变和两种堆石料试样在常规三轴条件下的蠕变和应力松弛,数值预测结果与相应试验结果具有较好的一致性,表明该流变模型的适应性。同时,将颗粒的球型指数、圆度和平均粒径作为表征颗粒材料内禀特征长度的一种度量,以反映颗粒材料的试样尺寸及其颗粒粒径与形状对流变过程中的轴向应变、偏应变和偏应力的影响关系,表明所发展的流变模型可以捕捉颗粒材料流变行为的压力相关性和尺寸效应。  相似文献   

5.
Starting with a recently developed three-dimensional eight node brick Cosserat element for nonlinear elastic materials, a simplified Cosserat element is developed for torsionless axisymmetric motions. The equations are developed within the context of the theory of a Cosserat point and the resulting theory is hyperelastic and is valid for dynamics of nonlinear elastic materials. The axisymmetric Cosserat element has four nodes with a total of eight degrees of freedom. As in the more general element, the constitutive equations are algebraic expressions determined by derivatives of a strain energy function and no integration is needed throughout the element region. Examples of large deformations of a nearly incompressible circular cylindrical tube and large deflections of a compressible clamped circular plate are considered to test the accuracy of the element.  相似文献   

6.
An eight node brick Cosserat point element (CPE) has been developed for the numerical solution of three-dimensional problems of hyperelastic nonlinear orthotropic elastic materials. In the Cosserat approach, a strain energy function for the CPE is proposed which satisfies restrictions due to a nonlinear form of the patch test. Part of the strain energy of the CPE is characterized by a three-dimensional strain energy function that depends on physically based nonlinear orthotropic invariants. Special attention has been focused on developing closed form expressions for constitutive coefficients in another part of the strain energy that characterizes the response to inhomogeneous deformations appropriate for orthotropic material response. A number of example problems are presented which demonstrate that the CPE is a robust user friendly element for finite deformations of orthotropic elastic materials, which does not exhibit unphysical locking or hourglassing for thin structures or nearly incompressible materials.  相似文献   

7.
A versatile hybrid finite element scheme consisting of special crack-tip elements and crack face contact elements is developed to analyse a partially closed interface crack between two dissimilar anisotropic elastic materials. The crack-tip element incorporates higher-order asymptotic solutions for an interfacial crack tip. These solutions are obtained from complex variable methods in Stroh formalism. For a closed interfacial crack tip, a generalized contact model in which the crack-tip oscillation is eliminated is adopted in the calculation. The hybrid finite element modelling allows the stress singularity at an open and closed crack tip to be accurately treated. The accuracy and convergence of the developed scheme are tested with respect to the known interface crack solutions. Utilizing this numerical scheme, the stress intensity factors and contact zone are calculated for a finite interface crack between a laminated composite material.  相似文献   

8.
Solutions to contact problems are important in mechanical as well as in civil engineering, and even for the most simple problems there is still a need for research results. In the present paper we suggest an alternative finite element procedure and by examples show the need for more knowledge related to the compliance of contact surfaces. The most simple solutions are named Hertz solutions from 1882, and we use some of these solutions for comparison with our finite element results. As a function of the total contact force we find the size of the contact area, the distribution of the contact pressure, and the contact compliance. In models of finite size the compliance depends on the flexibility of the total model, including the boundary condition of the model, and therefore disagreement with the locally based analytical models is expected and found. With computational contact mechanics we can solve more advanced contact problems and treat models that are closer to physical reality. The finite element method is widely used and solutions are obtained by incrementation and/or iteration for these non-linear problems with unknown boundary conditions. Still with these advanced tools the solution is difficult because of extreme sensitivity. Here we present a direct analysis of elastic contact without incrementation and iteration, and the procedure is based on a finite element super element technique. This means that the contacting bodies can be analyzed independently, and are only coupled through a direct analysis with low order super element stiffness matrices. The examples of the present paper are restricted to axisymmetric problems with isotropic, elastic materials and excluding friction. Direct extensions to cases of non-isotropy, including laminates, and to plane and general 3D models are possible.  相似文献   

9.
It is known that the standard full integration ten node tetrahedral element is inaccurate for thin nearly incompressible structures. Also, the commercial code ABAQUS recommends replacing this standard element (C3D10) with an undocumented patented modified element (C3D10M) for contact problems. The objective of this work is to develop a ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic hyperelastic materials. Hyperelastic constitutive equations for the CPE are developed by treating the element as a structure with a strain energy function that is restricted to satisfy a nonlinear form of the patch test. A number of examples are considered which demonstrate that the resulting CPE is accurate and robust, it does not exhibit the numerical stiffness for nearly incompressible materials observed for (C3D10) nor the unphysical instabilities observed for (C3D10M). Moreover, the CPE can be used for thin structures and three-dimensional bodies with a smooth transition from compressible to nearly incompressible material behavior.  相似文献   

10.
In the past, the combined finite–discrete element was mostly based on linear tetrahedral finite elements. Locking problems associated with this element can seriously degrade the accuracy of their simulations. In this work an efficient ten‐noded quadratic element is developed in a format suitable for the combined finite–discrete element method (FEMDEM). The so‐called F‐bar approach is used to relax volumetric locking and an explicit finite element analysis is employed. A thorough validation of the numerical method is presented including five static and four dynamic examples with different loading, boundary conditions, and materials. The advantages of the new higher‐order tetrahedral element are illustrated when brought together with contact detection and contact interaction capability within a new fully 3D FEMDEM formulation. An application comparing stresses generated within two drop experiments involving different unit specimens called Vcross and VRcross is shown. The Vcross and VRcross units of ~3.5 × 104kg show very different stress generation implying different survivability upon collision with a deformable floor. The test case shows the FEMDEM method has the capability to tackle the dynamics of complex‐shaped geometries and massive multi‐body granular systems typical of concrete armour and rock armour layers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The macroscopic behavior of materials is affected by their inner micro‐structure. Elementary considerations based on the arrangement, and the physical and mechanical features of the micro‐structure may lead to the formulation of elastoplastic constitutive laws, involving hardening/softening mechanisms and non‐associative properties. In order to model the non‐linear behavior of micro‐structured materials, the classical theory of time‐independent multisurface plasticity is herein extended to Cosserat continua. The account for plastic relative strains and curvatures is made by means of a robust quadratic‐convergent projection algorithm, specifically formulated for non‐associative and hardening/softening plasticity. Some important limitations of the classical implementation of the algorithm for multisurface plasticity prevent its application for any plastic surfaces and loading conditions. These limitations are addressed in this paper, and a robust solution strategy based on the singular value decomposition technique is proposed. The projection algorithm is then implemented into a finite element formulation for Cosserat continua. A specific finite element is considered, developed for micropolar plates. The element is validated through illustrative examples and applications, showing able performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The a posteriori error estimates based on the post-processing approach are introduced for elastoplastic solids. The standard energy norm error estimate established for linear elliptic problems is generalized here to account for the presence of internal variables through the norm associated with the complementary free energy. This is known to represent a natural metric for the class of elastoplastic problems of evolution. In addition, the intrinsic dissipation functional is utilized as a basis for a complementary a posteriori error estimates. A posteriori error estimates and adaptive refinement techniques are applied to the finite element analysis of a strain localization problem. As a model problem, the constitutive equations describing a generalization of standard J2-elastoplasticity within the Cosserat continuum are used to overcome serious limitations exhibited by classical continuum models in the post-instability region. The proposed a posteriori error estimates are appropriately modified to account for the Cosserat continuum model and linked with adaptive techniques in order to simulate strain localization problems. Superior behaviour of the Cosserat continuum model in comparison to the classical continuum model is demonstrated through the finite element simulation of the localization in a plane strain tensile test for an elastopiastic softening material, resulting in convergent solutions with an h-refinement and almost uniform error distribution in all considered error norms.  相似文献   

13.
This paper has two main objectives. The first is to examine the influence of membrane stresses on postbuckled deformations of nonlinear elastic isotropic rectangular plates. The second is to further examine the accuracy of a new 3-D Cosserat eight noded brick element (Nadler and Rubin in Int J Solids Struct 40: 4585–4614, 2003) which was developed within the context of the theory of a Cosserat point. The equations of the Cosserat element include both material and geometric nonlinearities. A number of example problems are considered which examine predictions of the Cosserat element for beams and plates and comparison has been made with results from the commercial codes ANSYS and ADINA. Also, the approximate nonlinear postbuckling solution described in Timoshenko and Gere (Theory of elastic stability, Mc Graw-Hill, New York) is shown to be more limited than originally expected. These results suggest that the Cosserat element is robust, can perform well under extreme conditions and is capable of modeling combinations of three-dimensional bodies with attached thin structures.  相似文献   

14.
In this paper, the highly non-linear frictional contact problems of composite materials are analysed. A proportional loading, the potential contact zone method and finite element analysis are used to solve the problems. A tree-like searching method is used to obtain the solution of the parametric linear complementary problem, which may overcome the anisotropic properties of contact equations caused by composite materials. In the frictional contact analysis of composite materials, the distributions of normal contact pressures, tangential contact stresses and relative tangential displacements are presented for different contact material systems and different coefficients of friction. The results show that the solutions in the paper have good agreement with Hertzian solutions. The influence of different contact material systems and different coefficients of friction on the contact stresses and displacements is large. As a numerical example, ball-indentation tests of composite materials are modelled by the three-dimensional finite element method.  相似文献   

15.
In this paper, simulation of two dimensional unilateral contact problems using a coupled finite element/element free Galerkin method is proposed. For the analysis, the element free Galerkin method and Galerkin formulation for two dimensional elasticity problems are considered. Then, the penalty method for imposition of contact constraint is proposed. The finite element shape functions are used in the penalty term of contact constraint. Finally, the accuracy of the presented method is verified through some examples. The numerical results have demonstrated that the presented approach is simple and accurate for frictionless contact analysis of 2D solids.  相似文献   

16.
A mixed finite element (FE) procedure of the gradient Cosserat continuum for the second-order computational homogenisation of granular materials is presented. The proposed mixed FE is developed based on the Hu–Washizu variational principle. Translational displacements, microrotations, and displacement gradients with Lagrange multipliers are taken as the independent nodal variables. The tangent stiffness matrix of the mixed FE is formulated. The advantage of the gradient Cosserat continuum model in capturing the meso-structural size effect is numerically demonstrated. Patch tests are specially designed and performed to validate the mixed FE formulations. A numerical example is presented to demonstrate the performance of the mixed FE procedure in the simulation of strain softening and localisation phenomena, while without the need to specify the macroscopic phenomenological constitutive relationship and material failure model. The meso-structural mechanisms of the macroscopic failure of granular materials are detected, i.e. significant development of dissipative sliding and rolling frictions among particles in contacts, resulting in the loss of contacts.  相似文献   

17.
唐洪祥  李锡夔 《工程力学》2007,24(9):8-13,18
提出了适用于饱和多孔介质中应变局部化分析及动力渗流耦合分析的Biot-Cosserat连续体模型。基于饱和多孔介质动力渗流耦合分析的Biot理论,将固体骨架看作Cosserat连续体,并考虑旋转惯性,建立了饱和多孔介质动力渗流耦合分析的Biot-Cosserat连续体模型。基于Galerkin加权余量法,对所发展的模型推导了以固体骨架广义位移(包含旋转)及孔隙水压力为基本未知量的有限元公式。利用所发展的数值模型,对包含压力相关弹塑性固体骨架材料的饱和多孔介质进行了动力渗流耦合分析与应变局部化有限元模拟,结果表明,所发展的两相饱和多孔介质动力渗流耦合分析的Biot-Cosserat连续体模型能保持饱和两相介质应变局部化问题的适定性及模拟饱和多孔介质中由应变软化引起的应变局部化现象的有效性。  相似文献   

18.
A general subsurface crack propagation analysis methodology for the wheel/rail rolling contact fatigue problem is developed in this paper. A three-dimensional elasto-plastic finite element model is used to calculate stress intensity factors in wheels, in which a sub-modeling technique is used to achieve both computational efficiency and accuracy. Then the fatigue damage in the wheel is calculated using a previously developed mixed-mode fatigue crack propagation model. The advantages of the proposed methodology are that it can accurately represent the contact stress of complex mechanical components and can consider the effect of loading non-proportionality. The effects of wheel diameter, vertical loading amplitude, initial crack size, location and orientation on stress intensity factor range are investigated using the proposed model. The prediction results of the proposed methodology are compared with in-field observations.  相似文献   

19.
共固化粘弹性复合材料兼具结构承载和阻尼减振功能。针对传统的混合单元法在应用于粘弹性夹层复合材料结构阻尼性能分析时存在着前处理困难、计算规模大、精度低以及难以考虑正交各向异性铺层自身损耗能力的缺点,推导了一种基于Layerwise离散层理论的四节点四边形复合材料层合板单元,并利用直接复特征值解法建立了共固化粘弹性复合材料结构的阻尼性能分析方法。将该方法应用于不同的阻尼结构,分析结果与文献中已公开结果和混合单元法的计算结果进行了对比验证。结果表明,基于离散层理论的层合板单元具有计算精度高、前处理建模简单和计算规模小的优点,可有效应用于复杂共固化粘弹性复合材料结构的阻尼性能分析和设计。  相似文献   

20.
用近似解析方法推导出拉伸正交各向异性有限宽板偏心圆孔的应力集中系数的显式表达式,除了比较极端的情况外,该式的精度较好。误差估计基于与有限元分析结果的比较。当偏心度取为零,即变为有限宽板中心圆孔时,此简化情况下的应力集中系数表达式与文献值和有限元解吻合得很好。推导的方法虽然简单,但结果比较理想。利用所推导的表达式可以求解各向异性材料的应力集中系数问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号