共查询到11条相似文献,搜索用时 78 毫秒
1.
在实验室开展了某砂岩铀矿石CO_2+O_2浸出工艺的柱浸试验。当液固体积质量比达到5.20(mL/g)时,铀浸出率可达到67.05%;HCO_3~-浓度是影响铀浸出浓度的关键因素,保持HCO_3~-浓度不低于800mg/L时浸铀效果较理想;浸出中后期铀浓度随矿石中铀的消耗而降低;溶浸液与矿石中碳酸钙、黄铁矿相互作用导致浸出液中Ca~(2+)、SO_4~(2-)浓度升高,pH在6.6以上时方解石和白云石都处于过饱和状态,为避免发生沉淀,应将pH控制在6.6以下;试验中石膏虽未达到饱和,但地浸实践中应关注Ca~(2+)、SO_4~(2-)浓度持续升高趋势,避免发生石膏沉淀堵塞。 相似文献
2.
新疆蒙其古尔铀矿床CO2+O2地浸采铀工艺中,铀浓度与HCO3-呈显著的正相关关系,但经过浸出初期后,提高CO2加入量不能有效提升体系HCO3-浓度,而对多数地浸单元的矿化条件而言,HCO3-浓度也尚未达最佳浸出需求。为此在该矿床某采区,采用补加碳酸氢铵和提高CO2加入量相配合的工艺,开展了强化浸出试验。结果表明,强化浸出效果显著,该采区浸出液中HCO3-从850 mg/L提升至1 200 mg/L,单孔铀浓度提升1.73~44.33 mg/L,集合样铀浓度提升8 mg/L。将pH调控在6.2~6.3和降低O2加入量稳定SO42-浓度,能避免强化浸出过程中发生碳酸钙和硫酸钙的沉淀,抽、注流量也并未受到影响。该强化浸出技术在多采区应用取得了良好的浸出效果和经济效益,是对该矿床CO2+O2浸出工艺的进一步优化。 相似文献
3.
CO2+O2地浸工艺是我国第三代铀矿采冶技术,地浸过程中溶浸液与含矿层矿物反应后,在将铀从矿石中浸出的同时,由于地下水矿化度增高又会产生化学沉淀,导致含矿层堵塞。CaCO3沉淀是CO2+O2地浸采铀过程中含矿层堵塞的重要原因。根据内蒙古纳岭沟铀矿CO2+O2浸铀过程中浸出液化学成分数据,通过水文地球化学模拟,对含矿层堵塞的水文地球化学条件进行了系统研究。结果表明,CaCO3沉淀是造成CO2+O2地浸中含矿层化学堵塞的重要原因。当溶浸液pH>6.5时,CaCO3将发生沉淀,溶浸液的pH、HCO3-浓度、Ca2+浓度是影响CaCO3沉淀的主要因素,过高的pH与HCO3-浓度、Ca2+浓度都会造成CaCO3沉淀的产生。根据模拟结果获得了不产生CaCO3沉淀条件下pH、HCO3-浓度、Ca2+浓度三者之间的关系,并由此认为,维持溶浸液较低的Ca2+浓度与较低的pH是预防与缓解CaCO3沉淀堵塞的有效途径。 相似文献
4.
以生产采区7个地浸单元为例,对蒙其古尔铀矿床CO_2+O_2地浸浸出过程进行了分析。结果表明,450~600mg/L的CO_2用量能够有效调节地浸体系pH以控制碳酸钙饱和沉淀,并能产生浸铀所需HCO_3~-;200~300mg/L的O_2对该矿层氧化效果明显,并可将SO_4~(2-)浓度控制在较低水平,有效避免产生硫酸钙沉淀;浸出液铀浓度与矿化条件和地浸单元注抽比均呈显著的相关关系。CO_2+O_2浸出工艺适合该矿床地浸生产。 相似文献
5.
为探明不同影响因素对CO2+O2地浸采铀效果的影响规律和影响机理,首先建立了适合CO2+O2地浸的渗流-化学-应力多场耦合数值模型,其次,结合实际现场工况,开展了注液速率、渗透率、O2配加浓度、HCO3-配加浓度和铀矿石平均品位对CO2+O2地浸采铀影响的数值模拟研究。研究表明:CO2+O2地浸过程中,抽液井铀浓度呈现“缓慢上升-快速上升-缓慢下降-趋于稳定”的阶段性变化趋势;矿层渗透率、铀矿石平均品位、O2配加浓度、HCO3-配加浓度与抽液井铀浓度呈现线性正相关关系,溶浸液的注入速率与抽液井铀浓度呈现线性负相关关系;CO2+O2地浸过程中应该选择初始渗透率大且铀品位高的矿层,同时应该适当加大O2和HCO3-的配加浓度,并控制好溶浸液注入速率,可实现铀资源的高效开采。本研究对CO2+O2地浸矿层的选择和地浸工艺的优化具有重要的指导意义。 相似文献
6.
以新疆某砂岩型铀矿床"六注两抽"的地浸单元为研究对象,采用数值模拟与水化学分析相结合的方法,对CO_2+O_2中性地浸初期流场形成进程及其与溶质运移的关系进行了研究。结果表明,在以抽孔和注孔连线为轴线的纺锤形地浸流场中,地浸溶液前锋用时15d抵达抽液孔。SO_4~(2-)和HCO_3~-浓度变化对地浸初期前锋溶液渗流的反应灵敏而精准,是判断CO_2+O_2中性地浸最初阶段溶液前锋运移理想的天然示踪剂。地浸初期Ca~(2+)、Mg~(2+)的碳酸盐都处于过饱和状态,其运移滞后于溶液渗流并与pH的变化密切同步。渗流模拟、水文地球化学模式计算结果以及实际水化学监测数据之间存在良好的互证性,这些方法的综合应用可使地浸流场分析更为客观和可靠。 相似文献
7.
为探索CO2+O2地浸采铀工艺在西北某砂岩型铀矿床应用的技术可行性,开展了地浸采铀现场条件试验。试验表明,向矿层水中注加O2,浸出液残留的溶解氧含量明显增加,但浸出液c(U)未见明显升高;在矿层水中原始c(HCO3-)为300 mg/L的条件下,向矿层水中同时注加CO2+O2,浸出液中c(HCO3-)仅上升至300~350 mg/L,c(U)未见明显升高;补加NH4HCO3使浸出剂中c(HCO3-)达到1 000 mg/L时,浸出液的c(U)随c(HCO3-)上升呈直线上升态势,c(U)峰值达到31.5 mg/L,c(U)与c(HCO3-)相关系数达0.95,呈强正相关性。研究表明,该砂岩型铀矿仅采用CO2+O2进行浸出,不能获得满足地浸工业要求的c(U);通过补加NH4HCO3并保持浸出液中c(HCO3-)达到800 mg/L时,浸出液c(U)出现明显上涨(峰值31.5 mg/L,平均25 mg/L以上)。该矿床技术可行的浸出工艺为“CO2+O2+NH4HCO3”地浸。 相似文献
8.
在CO2+O2地浸采铀应用过程中,浸矿剂不仅与载铀物质发生反应,亦与脉石矿物发生反应。为探索砂岩型铀矿主要脉石矿物与浸矿剂的相互作用,在中性条件下(pH分别为6.20、6.40、6.60、6.80和7.00)对脉石单矿物及天然铀矿石进行高压釜静态浸出试验,对比浸出溶液中各种离子浓度变化和反应后渣样的形貌变化特征。发现:1)方解石溶解可产生HCO3-和Ca2+,HCO3-升高能加速铀浸出,而Ca2+浓度升高会增加石膏和方解石沉淀风险;2)黄铁矿与浸矿剂反应易产生H+,阻碍CO2与水反应生成HCO3-,不利于铀浸出,但当黄铁矿与方解石同时存在,黄铁矿同浸矿剂相互作用会加速方解石的溶解,故对富方解石的矿石来说,黄铁矿的存在有利于铀的浸出;3)钾长石溶解可形成黏土矿物,对溶出的铀酰离子有一定的吸附性;此外,黏土颗粒细小,在地浸工业应用过程中增加黏土物理堵塞的风险;4)高岭石在浸出过程中会释放其所吸附的其他离子,同时吸附铀酰。渣样矿物学分析结果显示,各种矿物在浸出过程中均发生差异性溶解,其中方解石溶解最明显,表面逐步被侵蚀粗糙,钾长石表面溶蚀微弱;黄铁矿表面随着浸矿剂的作用逐步覆盖一层铁氧化物或者铁的氢氧化物;高岭石的微观形貌变化不明显。 相似文献
9.
CO_2+O_2地浸采铀工艺是一种适合较高碳酸盐含量含矿层地层的技术方法,在该工艺生产过程中会产生不同类型的堵塞,从而降低矿层渗透性。对影响渗透性的矿物因素,碳酸盐矿物、黏土矿物、铁矿物等化学堵塞因素进行了系统分析,认为碳酸盐和黏土矿物以及CO_2+O_2地浸过程中的化学堵塞是影响含矿层渗透性的主要因素。 相似文献
10.
采用新疆某砂岩铀矿石为原料,在实验室开展了分别以矿床地下水和地浸尾液配制浸出剂的CO_2+O_2中性浸出试验,研究不同铀矿石的铀浸出差异,以及对地浸具有影响的Fe、S的氧化与碳酸盐的溶解沉淀状况。结果表明,地下水和地浸尾液配制的浸出剂对相同矿石的浸出结果没有明显差异,矿石铀含量是最主要影响因素,浸出铀浓度与矿石铀含量显著正相关;静态浸出过程中,铀在体系中的扩散不充分,底部铀浓度显著高于上部,通常静态浸泡比搅拌浸出的铀浸出率低与此有一定关系;Fe的氧化较显著,浸后矿石FeO含量下降37%~62%,S也有所氧化;碳酸盐处于接近饱或超饱和状态,应将体系pH控制在6.5以内,以避免方解石和白云石发生饱和沉淀。 相似文献
11.
采用定期补酸的方法开展了新疆某新开发铀矿床矿石的摇瓶浸出试验,研究稳定酸度条件下铀浸出特征及酸度、氧化剂对铀浸出的影响。结果表明,经96 h浸出,恒酸无氧化剂铀浸出率为67.75%~96.62%,有氧化剂铀浸出率为84.55%~97.84%;铀浸出率与浸出剂酸度正相关,但当酸度超过6 g/L时该相关关系显著减弱;与不补酸浸出相比,恒酸浸出效果并无提升;过氧化氢有一定助浸效果,6 g/L酸度体系铀浸出率可提高3~4个百分点;总体而言,6 g/L硫酸是相对经济有效的工艺条件。 相似文献