首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
To date, wake measurements using particle image velocimetry (PIV) of bats in flight have studied only three bat species, all fruit and nectar feeders. In this study, we present the first wake structure analysis for an insectivorous bat. Tadarida brasiliensis, the Brazilian free-tailed bat, is an aerial hunter that annually migrates long distances and also differs strikingly from the previously investigated species morphologically. We compare the aerodynamics of T. brasiliensis with those of other, frugivorous bats and with common swifts, Apus apus, a bird with wing morphology, kinematics and flight ecology similar to that of these bats. The comparison reveals that, for the range of speeds evaluated, the cyclical pattern of aerodynamic forces associated with a wingbeat shows more similarities between T. brasiliensis and A. apus than between T. brasiliensis and other frugivorous bats.  相似文献   

2.
Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology.  相似文献   

3.
Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%.  相似文献   

4.
Beyond robins: aerodynamic analyses of animal flight   总被引:2,自引:0,他引:2       下载免费PDF全文
Recent progress in studies of animal flight mechanics is reviewed. A range of birds, and now bats, has been studied in wind tunnel facilities, revealing an array of wake patterns caused by the beating wings and also by the drag on the body. Nevertheless, the quantitative analysis of these complex wake structures shows a degree of similarity among all the different wake patterns and a close agreement with standard quasi-steady aerodynamic models and predictions. At the same time, new data on the flow over a bat wing in mid-downstroke show that, at least in this case, such simplifications cannot be useful in describing in detail either the wing properties or control prospects. The reasons for these apparently divergent results are discussed and prospects for future advances are considered.  相似文献   

5.
The wingbeat kinematics and wake structure of a trained house martin in free, steady flight in a wind tunnel have been studied over a range of flight speeds, and compared and contrasted with similar measurements for a thrush nightingale and a pair of robins. The house martin has a higher aspect ratio (more slender) wing, and is a more obviously agile and aerobatic flyer, catching insects on the wing. The wingbeat is notable for the presence at higher flight speeds of a characteristic pause in the upstroke. The essential characteristics of the wing motions can be reconstructed with a simple two-frequency model derived from Fourier analysis. At slow speeds, the distribution of wake vorticity is more simple than for the other previously measured birds, and the upstroke does not contribute to weight support. The upstroke becomes gradually more significant as the flight speed increases, and although the vortex wake shows a signature of the pause phase, the global circulation measurements are otherwise in good agreement with surprisingly simple aerodynamic models, and with predictions across the different species, implying quite similar aerodynamic performance of the wing sections. The local Reynolds numbers of the wing sections are sufficiently low that the well-known instabilities of attached laminar flows over lifting surfaces, which are known to occur at two to three times this value, may not develop.  相似文献   

6.
Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a ‘feathered upstroke’ during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called ‘normal hovering’ as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body–tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.  相似文献   

7.
Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle''s wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.  相似文献   

8.
The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were exactly as previously measured for the thrush nightingale. A procedure that accounts for the disparate sources of circulation spread over the complex wake structure nevertheless can account for the vertical momentum flux required to support the weight, and an example calculation is given for estimating drag from the components of horizontal momentum flux (whose net value is zero). The measured circulations of the largest structures in the wake can be predicted quite well by simple models, and expressions are given to predict these and other measurable quantities in future bird flight experiments.  相似文献   

9.
Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3–7 m s−1). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick''s and Rayner''s models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency—the ratio of aerodynamic power output to metabolic power input—varied from 5.9% to 9.8% for the same individuals, changing with flight speed.  相似文献   

10.
The purpose of this investigation was to develop and verify a predictive capability of determining baseball bat performance. The technique employs a dynamic finite element code with time dependent baseball properties. The viscoelastic model accommodates energy loss associated with the baseball's speed dependent coefficient of restitution (COR). An experimental test machine was constructed to simulate the ball–bat impact conditions in a controlled environment and determine the dynamic properties of the baseball. The model has found good agreement with the experimental data for a number of impact locations, impact speeds, bat models and ball types. The increased hitting speed generally associated with aluminum bats is apparent, but not for impacts inside of the sweet spot. A reinforcing strategy is proposed to improve the durability of wood bats and is shown to have a minimal effect on its hitting performance. The utility of using a constant bat swing speed to compare response of different bat types is also discussed.  相似文献   

11.
韩雪  慕昱  盛桂敏 《声学技术》2023,42(1):118-126
鸟类是生态系统中的重要组成部分,鸟类物种的多样性对生态环境有重要作用。所以,通过鸟声信号来识别鸟类从而对其进行保护有现实意义。文章对鸟声信号采用双参数的双门限法进行分段,从鸟声信号中寻找出声音的起始点和终止点的具体帧,进一步进行特征提取,提取每段鸟声信号中的短时能量和短时平均幅度,短时语谱图中的平均值、对比度、熵,共5种特征,采用优化参数的支持向量机进行鸟类物种分类。结果表明,基于混沌云粒子群优化(Chaos Cloud Particle Swarm Optimization, CCPSO)的支持向量机对比普通支持向量机的分类准确度得到提升,可有效地识别鸟类。利用该方法实现鸟类物种保护和生态系统管理的目的。  相似文献   

12.
采用实验和数值模拟两种方法对长宽比为3∶1的矩形柱尾流进行了稳定性研究.实验发现当雷诺数接近临界值时,未加扰动的矩形柱尾流呈二维定常状态.当在柱体上游一定位置和下游靠近柱体的位置上沿垂直于来流方向施加一个宽度很小的短时脉冲射流扰动以后,扰动随时间放大,并出现旋涡脱落现象,并且这种扰动激发的旋涡脱落可以持续很长时间,不会衰减.而在下游较远处施加同样的扰动时,扰动将会衰减,不能激发出持续的旋涡脱落.数值模拟再现了上述实验结果,并且表明,当扰动强度(脉冲射流出口速度)较小时,不会出现持续的规则旋涡脱落,只有当扰动强度达到一定阈值时,旋涡脱落才能被激发.  相似文献   

13.
Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter.  相似文献   

14.
Seabirds have evolved numerous adaptations that allow them to thrive under hostile conditions. Many seabirds share similar colour patterns, often with dark wings, suggesting that their coloration might be adaptive. Interestingly, these darker wings become hotter when birds fly under high solar irradiance, and previous studies on aerofoils have provided evidence that aerofoil surface heating can affect the ratio between lift and drag, i.e. flight efficiency. However, whether this effect benefits birds remains unknown. Here, we first used phylogenetic analyses to show that strictly oceanic seabirds with a higher glide performance (optimized by reduced sink rates, i.e. the altitude lost over time) have evolved darker wings, potentially as an additional adaptation to improve flight. Using wind tunnel experiments, we then showed that radiative heating of bird wings indeed improves their flight efficiency. These results illustrate that seabirds may have evolved wing pigmentation in part through selection for flight performance under extreme ocean conditions. We suggest that other bird clades, particularly long-distance migrants, might also benefit from this effect and therefore might show similar evolutionary trajectories. These findings may also serve as a guide for bioinspired innovations in aerospace and aviation, especially in low-speed regimes.  相似文献   

15.
Bird flight     
S Dhawan 《Sadhana》1991,16(4):275-352
  相似文献   

16.
Birds improve vision by stabilizing head position relative to their surroundings, while their body is forced up and down during flapping flight. Stabilization is facilitated by compensatory motion of the sophisticated avian head–neck system. While relative head motion has been studied in stationary and walking birds, little is known about how birds accomplish head stabilization during flapping flight. To unravel this, we approximate the avian neck with a linear mass–spring–damper system for vertical displacements, analogous to proven head stabilization models for walking humans. We corroborate the model''s dimensionless natural frequency and damping ratios from high-speed video recordings of whooper swans (Cygnus cygnus) flying over a lake. The data show that flap-induced body oscillations can be passively attenuated through the neck. We find that the passive model robustly attenuates large body oscillations, even in response to head mass and gust perturbations. Our proof of principle shows that bird-inspired drones with flapping wings could record better images with a swan-inspired passive camera suspension.  相似文献   

17.
A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing–wake interaction also contribute significantly to the lift asymmetry. Though the wing–wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing–wing interaction and wing–body interaction are small.  相似文献   

18.
This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight.  相似文献   

19.
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.  相似文献   

20.
The ability of many animals to access and exploit food is dependent on the ability to move. In the case of scavenging birds, which use soaring flight to locate and exploit ephemeral resources, the cost and speed of movement vary with meteorological factors. These factors are likely to modify the nature of interspecific interactions, as well as individual movement capacity, although the former are less well understood. We used aeronautical models to examine how soaring performance varies with weather within a guild of scavenging birds and the consequences this has for access to a common resource. Birds could be divided broadly into those with low wing loading that are more competitive in conditions with weak updraughts and low winds (black vultures and caracaras), and those with high wing loading that are well adapted for soaring in strong updraughts and moderate to high winds (Andean condors). Spatial trends in meteorological factors seem to confine scavengers with high wing loading to the mountains where they out-compete other birds; a trend that is borne out in worldwide distributions of the largest species. However, model predictions and carcass observations suggest that the competitive ability of these and other birds varies with meteorological conditions in areas where distributions overlap. This challenges the view that scavenging guilds are structured by fixed patterns of dominance and suggests that competitive ability varies across spatial and temporal scales, which may ultimately be a mechanism promoting diversity among aerial scavengers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号