共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
为解决黄秋葵规模化种植后的深加工需要,采用GZ-1型热风对流干燥试验装置对黄秋葵干制工艺进行研究,并从能量消耗计算公式出发提出了比能量消耗因子,作为能耗的评价因素。试验测定了热风温度、风速、铺放层数对干燥速率的影响,以干燥速率、能耗、色泽指标、多酚含量的变化等参数为评价指标,得出了较优的热风干燥条件为:温度80℃,双层铺放,前期采用风速1.2 m/s,湿基含水量小于53%后降速到0.8 m/s。该条件下得到的产品色泽指标好,总黄酮、多酚等有效成分损失少,能量利用率高。 相似文献
3.
目的:探讨黄秋葵多糖的超声提取工艺。方法:选定时间、水料比和温度作为影响因素,以黄秋葵多糖提取率为评价指标。在单因素试验的基础上,通过3因素3水平Box-Behnken中心组合试验,建立多糖提取率的二次多项式回归方程,经响应面回归分析得到优化组合条件。结果:最佳提取工艺条件为提取时间20min、水料比44:1(mL/g)、提取温度52℃、提取1次时,多糖提取率达到最大值。该条件下多糖提取率预测值为27.82%,验证值为27.75%。结论:为黄秋葵多糖的提取工艺提供参考,有利于对黄秋葵的进一步开发利用。 相似文献
4.
本文基于热风-微波分段联合干燥方式,探讨了联合干燥转换点干基含水率(2.00~5.00 g/g)、热风温度(50.0~70.0 ℃)及微波功率密度(6.67~33.33 W/g)对香菇营养成分、干燥特性及品质的影响。通过单因素实验确定较优参数范围并采用Box-Behnken组合设计优化联合干燥工艺,分析干燥工艺对干燥时间及香菇典型品质(色差、收缩率及多糖保留率)的影响。结果表明,通过响应面优化试验获得最优工艺为转换点干基含水率4.20 g/g、热风温度60.60 ℃、微波功率密度30.00 W/g,此条件下的联合干燥时间为178.33 min(其中热风干燥170 min,微波干燥8.33 min),产品色差ΔE为11.21,收缩率为65.28%,多糖保留率为66.98%,综合评分为0.145。研究结果表明热风-微波联合工艺能够实现对香菇的快速干燥,并保证较好的干品品质。 相似文献
5.
6.
黄秋葵真空干燥行为及干燥参数的响应面试验优化 总被引:1,自引:0,他引:1
为得到品质较高的黄秋葵干制品,采用真空干燥处理黄秋葵,直至其水分含量低于(5±0.5)%(湿基含水率)。采用含水率、复水比、灰度、总色差以及VC含量等指标来评价黄秋葵真空干燥过程中的品质特性,并通过非线性拟合得到适用于黄秋葵真空干燥的水分比变化的数学模型。为得到干燥速率快、品质高的干燥参数,以干燥温度、系统压强和切片厚度为试验因素,以干燥速率和VC含量为指标对黄秋葵真空干燥参数进行响应面试验优化。此外,采用模糊数学法对最佳干燥参数条件下的黄秋葵干制品进行感官评定。结果表明:Logarithmic模型能够描述出黄秋葵真空干燥过程中水分比的变化规律;干燥温度、系统压强、切片厚度分别为60 ℃、18 kPa和10 mm时黄秋葵综合加权评分值最高为0.911,该干燥条件下黄秋葵真空干燥的平均干燥速率和VC含量分别为1.059 kg/(kg·h)和8.315 mg/100 g干物质,均处于一个较高的水平。同时,通过模糊数学分析发现最佳参数组合条件下的产品能够被消费者接受。 相似文献
7.
为了对香菇柄变温压差膨化干燥工艺进行优化,采用响应面的中心组合设计方法,分析膨化温度(X1)、抽空温度(X2)和抽空时间(X3)三个因素对产品含水率(Y1)、色泽(Y2)和膨化度(Y3)的影响,根据实验数据推出描述三个指标的二次回归模型,并对变量进行响应面分析,得出优化膨化干燥工艺:膨化温度86℃,抽空温度69℃,抽空时间2 h。此条件下,膨化干燥的香菇柄的含水率为3.83%,色差值为42.29,膨化度为0.685。与热风干燥相比,变温压差膨化干燥产品膨化效果好,该技术可以应用于香菇柄的膨化产品。 相似文献
8.
双孢菇洞道式热风干燥特性及工艺优化 总被引:1,自引:0,他引:1
为确定双孢菇的最佳洞道式热风干燥工艺,在单因素试验的基础上,采用Box-Behnken响应面试验方法,分析干燥介质温度(X1)、空气出口风压(X2)、切片厚度(X3)3个因素对感官(Y1)、单位面积耗热量(Y2)、干燥速率(Y3)、复水率(Y4)4个指标的影响及交互作用。根据试验数据得出4个评价指标的二次回归模型。优化的切片双孢菇干燥条件是:干燥介质温度68℃、空气出口风压0.67kPa、切片厚度3.5mm,在此条件下,感官达8.3,复水率38.08%,能耗低。 相似文献
9.
10.
11.
12.
13.
14.
甘薯渣在传统干燥时,易发生黏结、结块的现象,为了改善这种状态,本研究以甘薯渣为原料,采用Box-Behnken优化试验研究流化床甘薯渣单位面积加载量、床层温度、空气流量3个因素对甘薯渣干燥时间和甘薯渣粒度综合评分的影响,并对流化床干燥甘薯渣的工艺条件进行了优化。结果表明:对流化床干燥甘薯渣综合评分的影响大小顺序为单位面积加载量空气流量床层温度,从回归模型中得到最佳工艺参数为单位面积加载量5 264 g/m~2、空气流量52.73 m~3/h、床层温度51.33℃,此条件下综合评分预测值为0.790,验证实验结果预测精度为93.60%。与传统干燥方式相比,干燥时间缩短,流化床干燥制得的样品20目过筛率82.3%,堆积密度为0.446g/mL,密度明显提高25.8%;硬度485.382 g,且硬度明显减小;扫描电镜中颗粒内部空隙增大,样品松散,可减小粉碎成本。本研究结果为工业化干燥、延长保存时间及其深加工生产提供理论依据。 相似文献
15.
利用响应面法优化南瓜淮山复合固体饮料的喷雾干燥工艺参数,为其工业化生产提供理论依据。以南瓜、淮山为原料,采用喷雾干燥技术制备复合固体饮料,以出粉率为指标,在单因素试验的基础上采用Box-Behnken软件优化喷雾干燥工艺参数。喷雾干燥的最佳干燥工艺:乳清分离蛋白(whey protein isolate,WPI)添加量14.6%、进风温度168℃、可溶性固形物5.5%、物料流速9 mL/min,在此条件下出粉率可达52.1%。产品呈细腻均匀粉末,色泽淡黄无杂质,具有南瓜和淮山的香甜。 相似文献
16.
17.
摘 要:本研究以山桐子油为芯材,麦芽糊精、大豆分离蛋白为壁材,单硬脂酸甘油酯为乳化剂,使用喷雾干燥技术制得山桐子油微胶囊;通过单因素实验和响应面优化实验,研究山桐子油喷雾干燥制微胶囊最佳工艺条件。响应面优化试验表明:在壁材与芯材质量比为4.8:1,麦芽糊精与大豆分离蛋白的壁材复配质量比为 2.6:1,水与壁材体积质量比为6.8:1的条件下,山桐子油微胶囊包埋率可达到84.22 % 。在运用氧化稳定性指数法(OSI)氧化稳定性测试中,山桐子微胶囊在常温条件下,保持30d 后,油脂的 OSI 值与初始值无显著变化,验证了山桐子微胶囊的稳定性;通过激光共聚焦电子显微镜观察结果显示,微胶囊具有较规则球形微观结构,囊壁比较完整,具有良好的包埋结构。 相似文献
18.
19.