首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels using propane. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and lengths of 1000 mm and 2000 mm, respectively, and it was uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 5–20 kW m−2, a mass flux range of 50–400 kg m−2 s−1, saturation temperatures of 10, 5, and 0°C and quality ranges of up to 1.0. The nucleate boiling heat transfer contribution was predominant, particularly at the low quality region. Decreases in the heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux and mass flux, and with a lower saturation temperature and inner tube diameter. Laminar flow appeared in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for propane was developed with 8.27% mean deviation. This paper was recommended for publication in revised form by Associate Editor Jae Young Lee Jong-Taek Oh received his B.S., M.S. and Ph.D. degrees in Refrigeration Engineering from Pukyong National University, Korea. Dr. Oh is currently a Professor at Department of Refrigeration and Air Conditioning Engineering, Chonnam National University at Yeosu, Korea. Dr. Oh’s research interests are in the area of boiling and condensation heat transfer and pressure drop of refrigerants with small tubes, heat pump and transportation refrigeration.  相似文献   

2.
This paper reports an experimental study on flow boiling of pure refrigerants R134a and R123 and their mixtures in a uniformly heated horizontal tube. The flow pattern was observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa in the heat flux ranges of 5–50 kW/m2, vapor quality 0–100 percent and mass velocity of 150–600 kg/m2s. Both in the nucleate boiling-dominant region at low quality and in the two-phase convective evaporation region at higher quality where nucleation is supposed to be fully suppressed, the heat transfer coefficient for the mixture was lower than that for an equivalent pure component with the same physical properties as the mixture. The reduction of the heat transfer coefficient in mixture is explained by such mechanisms as mass transfer resistance and non-linear variation in physical properties etc. In this study, the contribution of convective evaporation, which is obtained for pure refrigerants under the suppression of nucleate boiling, is multiplied by the composition factor by Singal et al. (1984). On the basis of Chen’s superposition model, a new correlation is presented for heat transfer coefficients of mixture.  相似文献   

3.
The evaporation heat transfer coefficienthr and frictional pressure drop δpf of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45° chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R- 134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficienthr and pressure drop Δpf increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in theh r and Δpf. But the effect of the average heat flux does not show significant effect on the hr and Δpf. Finally, at a higher saturation temperature, both theh r and Δpf are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.  相似文献   

4.
An investigation of the gas-liquid ejector has been carried out to study the influence of operating conditions and ejector geometries on the hydrodynamics and mass transfer characteristics of the ejector by using three-dimensional CFD modeling. The CFD results were validated with experimental data. Flow field analysis and prediction of ejector performance were also conducted. Variations of the operating conditions were made by changing the gas-liquid flow rates ratio in the range of 0.2 to 1.2. The length to diameter ratio of mixing tube (L M/D M) was also varied from 4 to 10. CFD studies show that at L M/D M=5.5, the volumetric mass transfer coefficient increases with respect to gas flow rate. Meanwhile, at L M/D M=4, the plot of volumetric mass transfer coefficient to gas-liquid flow rate ratio reaches the maximum at gas-liquid flow rate ratio of 0.6. This study also shows that volumetric mass transfer coefficient decreases with the increase of mixing tube length.  相似文献   

5.
In this study, the effect of carbon nanotubes (CNTs) on nucleate boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water were used as working fluids and 1.0 vol.% of CNTs was added to the working fluids to examine the effect of CNTs. Experimental apparatus was composed of a stainless steel vessel and a plain horizontal tube heated by a cartridge heater. All data were obtained at the pool temperature of 7°C for all refrigerants and 100°C for water in the heat flux range of 10–80 kW/m2. Test results showed that CNTs increase nucleate boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat fluxes of less than 30 kW/m2. With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generation. Fouling on the heat transfer surface was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their commercial application to enhance nucleate boiling heat transfer in many applications.  相似文献   

6.
We report experimental data of boiling heat transfer of R-1234yf in horizontal small tubes. The experimental data obtained in the horizontal circular small tubes of 1.5 and 3.0 mm inner diameter, the lengths of 1000 and 2000 mm, the mass flux range from 200–650 kg/m2s, the heat flux range from 5–40 kW/m2 and saturation temperature of 10 and 15°C, was used to develop a modified correlation for the heat transfer coefficient. The flow pattern of the experimental data was mapped and analyzed with existing flow pattern maps. The heat transfer coefficient was also compared with some well-known correlations.  相似文献   

7.
Particles in liquid-solid suspension flow might enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration, The heat transfer characteristics of liquid-solid suspension in turbulent flow are not well understood due to the complexibility of interaction between solid particles and turbulence of the carrier fluid. In this study, the heat transfer coefficients of liquid-solid mixtures are investigated using a double pipe heat exchanger with suspension flows in the inner pipe. Experiments are carried out using spherical fly ash particles with mass median diameter ranging from 4 to 78 μm. The volume concentration of solids in the slurry ranged from 0 to 50% and Reynolds number ranged from 4,000 to 11,000. The heat transfer coefficient of liquid-solid suspension to water flow is found to increase with decreasing particle diameter. The heat transfer coefficient increases with particle volume concentration exhibiting the highest heat transfer enhancement at the 3% solid volume concentration and then gradually decreases. A correlation for heat transfer to liquid-solid flows in a horizontal pipe is presented.  相似文献   

8.
This research is an experimental and numerical investigation of heat transfer and fluid flow characteristics in separated, recirculated and reattached regions created by an axisymmetric abrupt expansion and by an abrupt expansion followed by an abrupt contraction (called a “cavity”) in a circular tube at a uniform wall temperature. The flow just upstream of the expansion was unheated and proved to be fully-developed at the entrance to the heated cavity region. Local heat transfer coefficients were measured using a balance-type isothermal heat flux gage. Measurements were made at a small-to-large tube diameter ratio of d/D = 0.4 and downstream Reynolds numbers ranging from ReD = 4,300 to 44,500. Generally, the maximum Nusselt numbers downstream of an axisymmetric abrupt expansion at a uniform wall temperature occur between 9 and 12 step heights from the expansion step. Numerical simulation has been carried out by a two-equation turbulence model and its results such as mean velocity profiles and local Nusselt numbers are in good agreement with experimental results.  相似文献   

9.
非圆截面小通道内R113的流动沸腾换热特性   总被引:1,自引:0,他引:1  
针对非圆截面小通道流动沸腾换热研究报道较少的现状,以R113为工质,对4种不同水力直径的正方形、三角形截面小通道内的流动沸腾换热特性进行试验研究,试验参数范围:入口干度,过冷~1.0;质量流速400~ 3 300 kg/(m2?s);热流密度20~150 kW/m2,并将试验结果与相近水力直径的圆通道内流动沸腾试验结果进行了对比分析。试验结果表明:非圆小通道内饱和流动沸腾局部壁面温度与质量流速密切相关,并受热负荷与流动沸腾换热状况的影响;质量流速和壁面热负荷是非圆小通道内流动沸腾换热特性的主要影响因素;与相近水力直径的圆通道内流动沸腾试验数据对比显示,非圆截面小通道具有明显的强化传热作用。  相似文献   

10.
The current of positive ions in a liquid-xenon ionization chamber was studied under intense pulsed irradiation of the chamber with bremsstrahlung from a microtron. The dose absorbed in xenon during a radiation pulse was varied from 0.1 to 1.3 × 104 μGy. It has been revealed that, in the dependence of the current on the irradiation dose, a deviation from a simple linear dependence is observed at a pulse dose of ∼4 μGy (∼0.2D cr). Calculations show that recombination is the main cause of such deviation. A space charge appearing in the chamber under high irradiation intensities leads to a decrease in the electric field. The manifestation of the effects of a space charge becomes substantial when the field in a certain part of the chamber drops almost to zero. Under particular irradiation conditions, the space charge manifested itself in this study beginning with doses in a pulse of ∼50 μGy. The joint effect of the recombination and the space charge resulted in a dependence of the type of iD 1/3. The influence of the ion current on the energy resolution of the ionization spectrometer is calculated for γ quanta detected during intervals between irradiation pulses. It is shown that a substantial impairment of the resolution begins at doses appreciably lower than the critical dose. The influence of the ion current becomes greater, as the dimensions of the chamber increase.  相似文献   

11.
An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10-15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψcrit= 3-7%, Ψcrit=0.5-1.3%, respectively, in the range of heat fluxq” = 5-90kW/2  相似文献   

12.
Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0 m long horizontal tubes with nominal outside diameters of 9.52 and 7.0 mm over an evaporating temperature range of ?15 to 5°C, a mass flux range of 68 to 211 kg/m2s, and a heat flux range of 5 to 15 kW/m2. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-410A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.  相似文献   

13.
The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scalel D +(≡l D (νε)1/4/ν) and the invariants of small and large scale turbulence anisotropy tensors,aij ( = [`(ui uj )] /k - 2dij /3)a_{ij} ( = \overline {u_i u_j } /k - 2\delta _{ij} /3) ande ij (=ε ij /ε-2δ ij /3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities ofk-ε model are extended to the turbulent flow calculation of complex flow passages.  相似文献   

14.
微尺度通道内混合物流动沸腾特性研究   总被引:2,自引:2,他引:0  
对非共沸混合工质R32/R134a(25%/75%)在微尺度管内的流动沸腾换热特性进行了试验研究。试验结果表明,在较高热流密度下,微尺度管内流动沸腾换热与质量干度和质量流量基本无关,热流密度对换热有着很大的影响,在较宽的热流密度范围内,核态沸腾在换热过程中占据主导地位。和细小管道相比,在相同条件下,微尺度管道内的流动沸腾表面传热系数高于细小管道。  相似文献   

15.
The friction and wear properties of the prevailing different solid lubricant coatings (Ion-plated Au, Ion-plated Ag and RF-sputtered PTFE on SUS440C stainless steel) used in the bearings of high-speed cryogenic-turbo-pumps of liquid rocket engines were experimentally evaluated in liquid nitrogen immersed conditions. Also the above experiments were carried out with two newly proposed solid lubricant coatings of sputter-ion-plated MoSTi and a new ion-plated Pb on SUS440C stainless steel. The friction coefficient and wear rates of the coatings of ion-plated Au, ion-plated Ag, RF-sputtered PTFE, the new ion-plated Pb and MoS2Ti-SIP (with coating thickness of 0.7±0.1 μm) on SUS440C steel against SUS440C stainless steel ball in liquid nitrogen were compared. Worn surfaces were examined microscopically with a microscope and a profilometer for understanding the mechanisms of friction and wear and transfer film lubrication in liquid nitrogen. It is found that the newly proposed solid lubricant coatings are showing promising results for their use in liquid nitrogen immersed conditions. The sputter-ion-plated MoSTi coating on SUS 440C steel shows a minimum value of friction coefficient (μ=0.015) and wear rate (wc=0.56 × 10−6 mm3/N m ) in liquid nitrogen.  相似文献   

16.
The possibility of using semiconductor single crystals (Si, GaP, etc.) as calorimeters for pulsed heat flux measurements is discussed. The method of laser interferometric thermometry in the reflected light at a wavelength of 1.15 μm makes it possible to detect changes δθ≈2×10−5 K in the temperature of a 1-mm-thick Si single crystal. The sensitivity of a calorimeter with laser readout is sufficient for detection of the absorbed energy δE≈15 μJ/cm2 and is independent of the Si plate thickness. The method for selecting the working point in the resonance curve for achieving maximum sensitivity in detection of pulse fluxes is discussed.  相似文献   

17.
Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of 30–40°C condensation temperature, 95–410 kg/m2s mass flux, and 0.15–0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.  相似文献   

18.
建立单面加热垂直矩形窄通道流动沸腾换热试验装置,针对截面250mm×3.5mm的窄缝通道,对水流动沸腾换热特性进行试验研究。通过试验分析可知:(1)随着干度的增加,局部换热系数先增加后减小,有一个最大值,此时处于饱和核沸腾区域,其蒸汽干度也接近于0,同时也接近于沸腾起始点。相应地流体从单相流-泡状-块状流-搅拌-环状流转变。(2)在流动沸腾换热中,热流密度对核态沸腾换热有明显影响,而对流动沸腾液膜蒸发的影响甚小,所以可以认为由热流密度的变化而引起的换热变化,主要表现在核态沸腾。(3)入口温度的变化对单相流动的换热系数有影响,而沸腾换热系数与流型及汽泡的产生及扰动有极大关系,入口温度对流动沸腾局部换热系数基本没有影响。  相似文献   

19.
The purpose of this study is to numerically investigate heat transfer and flow field in a semi-confined axi-symmetric laminar air jet impinging on a concave surface, or dimple, with uniform heat flux. A commercial software package relying on the finite element method was used for the simulation, and mesh convergence was examined in order to minimize computational cost. Jet impingement on a flat plate was used as a baseline reference case, and flat plate results were validated against previously published experimental data with good agreement. The effects of various parameters involved in dimple impingement -such as Reynolds number (Re) between 100–1,400; jet-to-plate spacing (H/Dj) ranging from 2 to 6 jet diameters; dimple depths (d/Dd) of 0.1, 0.15, and 0.2; and the ratio of jet diameter and dimple projected diameter (Dj/Dd) from 0.25 to 1—were all studied. Comparisons show that heat transfer reduction occurs in the presence of dimples because of the larger impingement area, which results in less momentum flux. The dimple curvature lifts the post-impinging fluid and creates a backflow, instead of allowing it to maintain contact with the surface, as is the case with flat plate impingement.  相似文献   

20.
A method of controlled pulse heating of low-inertia thermal probe immersed into the liquid under study with a temperatureT 0 is described. The control system provides a “temperature plateau”-type heating mode, which consists in a rapid (t 1∼10 μs) increase in the mass-average probe temperature to a chosen valueT pl ≫T 0 and maintains this value for a certain time interval (t 2∼103–102 μs) to within 1 K. Thermal effusivity of the substance, in relative units, is determined from the value of its internal heat flux. Sensitivity to changes in the thermal effusivity of a reference substance was 10−4. Due to the short pulse length and fine tuning of theT pl value, the method allows one to conduct step-by-step scanning of “instantaneous” thermal properties of a substance in the region of its short-lived states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号