首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The NZP family of new low-expansion materials has attracted wide interest for its potential in advanced technological applications. NaZr2P3O12, which is the parent composition of this family, has been synthesized by the solution sol-gel method using special precursor solutions, which led to its formation (although poorly crystalline) at temperatures as low as 120°C. The lowest temperature of formation of a single phase of NaZr2P3O12 with a high degree of crystallinity was found to be 600°C.  相似文献   

2.
Axial and dilatometric thermal expansions and phase transformations were studied for solid solutions having the α-PbO2 structure in the ZrTiO4—In2O3—M2O5 (M = Sb, Ta) system with nominal formulas of Zr x Ti y In z Sb z O4 and Zr x Ti y In z Ta z O4 where x + y + 2 z = 2. With increased substitution of z , the cell volume increased, the difference in the b parameters at room temperature between those quenched from 1400° and 1000°C decreased, and the thermal expansion decreased. The axial thermal expansion of ZrTi y In z · Ta z O4 with z = 0.3 was almost identical with that of HfTiO4, and those with z = 0.4 and z = 0.45 were smaller than that of HfTiO4. Unit-cell volumes of these compound were compared with those of single oxides to make it clear that the unit-cell volume of ZrTiO4 was small anomalously and to distinguish the normal and abnormal substitution systems. These results were explained by the working hypothesis proposed for these compounds.  相似文献   

3.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

4.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

5.
New oxide compounds with α-PbO2 structure have been synthesized by solid-state reactions. These are derived from ZrTiO4 and HfTiO4 by a different kind of ionic substitution. The thermal expansion behavior of these phases was investigated by means of a dilatometer and an X-ray heating diffractometer. These measurements revealed rather low expansion for some of the Zr(Me3+/Me5+)O4, solid solutions. This behavior is attributed to their high expansion anisotropy, which leads to extended formation of microcracks.  相似文献   

6.
The Phase relations of the system Gd2O3-Ta2O5 in the composition range 50 to100 mol% Gd2O3 was studied by solidstate reactions at 1350°, 1500°, or 1700°C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phase (W2 phase, space group C2221) with the composition of Gd3 TaO7 seems to melt incongruently; at about 2040°C, although this Gd3TaO7 Phase was previously reported to melt congruently. A new fluorite-type cubic phase (F phase, space group Fm3m ) was found for the first time above 1500°C in the system. It melts congruently with the composition of about 80mol% Gd2O3at 2318° 3°C. A phase diagram was proposed for the system Gd2O3–Ta2O5 in the Gd2O3–rich portion  相似文献   

7.
The stress due to thermal expansion anisotropy in polycrystalline Al2O3 was measured. The broadening of spectroscopic R lines (692 and 693 nm, due to Cr3+ impurities) was used to measure the stresses (at 77 K) in samples with grain sizes of 50 to 150 μm that had been cooled, from 2150 K, at constant rates from 0.1 to 100 K/min. The maximum stress was found to vary from 80 to 100 MPa, depending on the thermal history of the sample. The results are compared to the predictions of a model based on stress relaxation by diffusional creep and are in good agreement for the dependence on cooling rate. No effect due to grain-size changes was observed due to the limited range of grain sizes accessible in this study.  相似文献   

8.
ZrW2O8负膨胀陶瓷材料进展   总被引:4,自引:0,他引:4  
叙述了各向同性负膨胀ZrW2O8陶瓷材料的制备、结构、负膨胀机理和应用.  相似文献   

9.
Literature data for the 12CaO°7Al2O3 phase show certain discrepancies in the structure, thermal stability, and mean linear thermal expansion obtained by different techniques. Phase-pure, cubic, polycrystallin I2CaO°7Al2O3 was synthesized by annealing a stoichiometric melt in air. Infrared spectrophotometry indicated stabilization by moisture. Differential thermal analysis and thermogravimetric analysis showed the cubic phase to be stable up to at least 1200° C. High-temperature X-ray diffraction analysis of a polycrystalline sample and dilatometric measurement of sintered pellets indicated a linear thermal expansion of 41 × 10-7 to 43X10-7/°C in the temperature range 200° to 800°C.  相似文献   

10.
11.
The phase relations for the system y2o3–Ta2o5 in the composition range 50 to 100 mol% Y2O3 have been studied by solid-state reactions at 1350°, 1500°, or 17000C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phases (W2 phase, space group C2221), fluorite-type cubic phases (F phase, space group Fm3m )and another orthorhombic phase (O phase, space group Cmmm )are found in the system. The W2 phase forms in 75 mol% Y2O3 under 17000C and O phase in 70 mol% Y2O3 up to 1700°C These phases seem to melt incongruently. The F phase forms in about 80 mol% Y2O3 and melts congruently at 2454° 3°C. Two eutectic points seem to exist at about 2220°C 90 mol% Y2O3, and at about 1990°C, 62 mol% Y2O3. A Phase diagram including the above three phases were not identified with each other.  相似文献   

12.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

13.
The Bi2O3-rich side of the system Bi2O3-SiO2 was studied with powder X-ray diffraction and differential thermal analysis. In the composition 6Bi2O3. x SiO2, the metastable γ phase (bcc) was observed to exist over the range of 0 < x ≤ 1. In most of the compositions studied, metastable phases of water-quenched melts transformed into another metastable phase before reaching stable phases. A modification of the phase diagram is proposed.  相似文献   

14.
The X-ray diffraction pattern for potassium-zirconium phosphate is significantly improved when the material is prepared by the sol-gel route rather than the powder method. Peaks at high, low, and intermediate angles are presented and compared for the two methods. It is assumed that the more nearly homogeneous mixing of the elements in the sol-gel process is responsible for the significant improvement in crystallinity.  相似文献   

15.
Tetragonal ZrO2 ( t -ZrO2) solid solutions were prepared with addit ons of 2 mol% Y2O3 plus up to 0.45 mol% Nb2O5. The thermal expansion coefficients in both the a- and c -axis lattice directions increased with Nb2O5 alloying and the thermal expansion in the c -axis direction was greater than that in the a -axis direction over the entire composition range. This anisotropic thermal expansion behavior was related to the 4-fold coordination of Nb5+ with oxygen ions in t -ZrO2 solid solutions in the system ZrO2–Y2O3–Nb2O5. The fracture toughness continuously increased with Nb2O5 alloying and suggested that the c/a axial ratio is a more significant factor than the internal stress that arises from the thermal expansion anisotropy, in the determination of the transformability of t -ZrO2 in this system.  相似文献   

16.
Grain Size-Microcracking Relation for NaZr2(PO4)3 Family Ceramics   总被引:1,自引:0,他引:1  
The grain size-microcracking relation was examined for low thermal expansion NaZr2(PO4)3 family ceramics. By measurements of the strength, Young's modulus, thermal expansion, and grain size of polycrystalline ceramics sintered at appropriate conditions, the critical grain size for microcracking was determined. The critical grain size was proportional to the inverse square of the maximum thermal expansion difference.  相似文献   

17.
18.
A single-phase material (HfMg)(WO4)3 with an orthorhombic structure, A2 (WO4)3-type tungstate, has been successfully prepared for the first time by the calcination of HfO2, MgO, and WO3, substituting Hf4+ and Mg2+ for A3+ cations in A2(WO4)3. The new material shows a negative thermal expansion coefficient of approximately −2 ppm/°C from room temperature to 800°C. The mechanism of negative thermal expansion is assumed to be the same as that of Sc2(WO4)3.  相似文献   

19.
Preferential X-ray line broadenings in γ-Fe2o3 samples prepared from γ-FeOOH, α-FeOOH, N2H5Fe(N2H3-COO)3-H2O, FeOOCH3, and colloidal Fe3O4 are compared. Isotropic size and small crystallites are the origin of the uniform and enhanced X-ray line broadening in samples derived from hydrazinate and colloidal Fe3O4. Nonuniform line broadening in ex-α-FeOOH and ex-γ-FeOOH is due to an elongated crystallite shape and the presence of stacking faults, respectively. The thermal behavior of samples with low crystallite size and uniform line broadening is characterized by an exothermal recrystallization process simultaneous to the phase transformation γ-Fe203→α-Fe2O3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号