共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前主流方法对图像中纹理单一区域匹配效果不佳的问题,提出了一种自适应的基于区域增长的立体像对稠密匹配算法。该算法利用灰度共生矩阵,在区域增长过程中的匹配窗内计算其纹理数量,然后根据纹理数量的多少自适应调节匹配窗的大小。当匹配窗内纹理数量足够多时,该匹配窗就能够表征该匹配窗中心点的特征,因此可以减少误匹配发生的几率。实验结果证明,该算法具有良好的性能。 相似文献
2.
针对传统局部立体匹配算法在深度不连续区域误匹配率高的问题,提出一种基于自适应权重的遮挡信息立体匹配算法。首先,采用左右一致性检测算法检测参考图像与目标图像的遮挡区域;然后利用遮挡信息,在代价聚合阶段降低遮挡区域像素点所占权重,在视差优化阶段采用扫描线传播方式选择水平方向最近点填充遮挡区域的视差;最后,根据Middlebury数据集提供的标准视差图为视差结果计算误匹配率。实验结果表明,所提算法相对于自适应权重算法误匹配率降低了16%,并解决了局部立体匹配算法在深度不连续区域误匹配率高的问题,提高了算法的匹配精确性。 相似文献
3.
4.
5.
针对立体匹配中匹配代价和支持窗口难以选择的问题,提出一种将多种相似性测度相结合的局部立体匹配算法.首先,构造匹配代价,结合图像的 Census 变换、WLD(Weber 局部描述符)特征、图像色彩信息以及图像梯度信息作为匹配代价;然后,使用引导滤波器对匹配代价进行聚合;最后,针对 WTA(赢者全取)策略引入的视差选择歧义问题和左右一致性检测(LRC)引入的水平条纹问题,提出了一种基于可信度和加权滤波的视差修正算法.利用 Middlebury 测试平台提供的标准测试图像对本文算法进行测试,其平均错误匹配率为 5.30%,与 FastBilateral 算法等一些公认的性能优异算法相比,本文算法提高了匹配准确率. 相似文献
6.
根据SIFT特征对旋转、尺度缩放、亮度变化保持不变性的特点,提出基于SIFT特征和边缘特征点的区域匹配方法。该方法确定符合SIFT特征的边缘为可靠特征点,并确定其视差;根据视差梯度原理确定其他点的视差,最后生成稠密的视差图。实验结果表明,SIFT特征的引入,提高了特征点视差的准确性,一些弱纹理区的匹配也有所改善。 相似文献
7.
Stereo matching is a fundamental and long-standing task in computer vision. Although learning-based stereo matching algorithms have made remarkable progress, two major challenges still persist. Firstly, existing cost aggregation methods that use stacked three-dimensional convolutions are complex, leading to heavy computation and memory costs. Secondly these methods continue to struggle with establishing reliable matches in weakly matchable such as that edges and thin structures. To overcome these limitations, we propose an accurate and efficient network called Attention-guided Aggregation and Error-aware Enhancement Network (AAEE-Net). Our approach involves designing an Attention-guided Aggregation Mechanism (AAM) based on simple image features. This mechanism uses attention weights generated from image features to guide cost aggregation with a more efficient and effective strategy. Additionally, we propose an Error-aware Enhancement Module (EEM) that refines the raw disparity by combining high-frequency information from the original image and warp error between the left and right views. EEM enables the network to learn error correction capabilities that produce excellent subtle details and sharp edges. The experimental results on the SceneFlow and KITTI benchmark datasets demonstrate that AAEE-Net achieves state-of-the-art performance with low inference time. The qualitative results show that AAEE-Net significantly improves predictions, especially for thin structures. 相似文献
8.
本文减少了最小二乘转换参数,通过三个几何转换参数和两个辐射转换参数建立对应关系,采用经极线校正的立体像对,使对应点的搜索在相同扫描行上进行,减小了搜索空间,提高了匹配速度,且把匹配方法嵌入到多尺度空间中以提高匹配速度,通过视差后处理进一步提高匹配精度。采用自适应窗口技术解决由于存在矩阵不可逆情况而导致大量不可匹配点和在地形平坦、灰度变化不明显的区域不匹配或误匹配率高的缺点。试验结果表明了,本算法精度高,匹配率高的优点,有相当的使用价值。 相似文献
9.
提出了一种基于直线段特征的分级立体图像匹配算法。根据直线段构造了长方形区域作为立体匹配的基元,计算区域的灰度均值及区域的转动惯量等属性值,构造相似性度量函数得到初级匹配结果;根据直线段间的几何关系建立二级匹配算法,求解基础矩阵。在基础矩阵的指导下,完成三级立体匹配,实验结果表明了该算法的有效性和可行性。 相似文献
10.
SA Lloyd 《Image and vision computing》1985,3(4):177-181
A new algorithm for stereo matching is presented, based on the idea of imposing a limit on disparity gradients allowed in the matched image. The matching problem will be expressed as one of maximizing a certain function, subject to constraints. Standard methods from optimization theory may then be used to find a solution. 相似文献
11.
12.
针对计算机视觉和模式识别领域基本而重要的问题--立体匹配,提出了一种基于极线几何、结合特征匹配与区域匹配、视差梯度约束等多约束立体匹配算法,实现图像快速准确匹配.该算法将现有的基于特征和基于窗口匹配两种方法相结合,并加入视差梯度等约束条件,有效弥补了单一匹配算法的不足,同时增强了算法适应性.实验表明,该算法具有更高的求解质量和求解效率,可以满足双目立体视觉系统的需要. 相似文献
13.
立体视觉计算过程中的匹配值计算极其耗时,整幅图的匹配值由各个参考像点的匹配值计算构成,因此,如果能够将前后两次参考像点的匹配值计算中重复的部分提取出来,那么就可以节约部分计算时间。将前后两次匹配值计算所涉及的领域像素分布情况分析清楚,结合所选取的计算步骤,将各个子步骤的中间输出结果缓存起来,以便下一次计算时直接使用而不需重新计算。如果匹配所用的邻域子图与整幅图相比非常小,则这种类似于流水作业的时间重叠计算方式可以获得很好的加速性能,同时该加速性能也会随着邻域尺寸的加大而提高,这得益于所省略的中间计算步骤较多的原因。 相似文献
14.
针对通过立体匹配直接得到视差图存在空洞等失真点(区域)的问题,本文提出一种基于自适应窗的视差优化方法.该方法先通过左右图像的视差一致性,检测出非零视差失真和黑洞失真区域,然后将所在像素点与周围像素点作视差代价比较,并针对由环境、光照以及其他噪声因素造成的误匹配所导致的黑洞区域,通过采用自适应窗填充黑洞失真区域,进而利用... 相似文献
15.
针对基于区域的立体图像匹配算法支持窗口难以选择,容易出现窗口过大或过小的问题,提出一种新的自适应窗口立体图像匹配算法。该算法利用Sobel梯度算子计算像素梯度值,并根据其梯度值动态地获取具有自适应的支持窗口,然后分别选择相似性测度函数SAD或NCC搜索最佳匹配点,获得视差图。此外,算法在窗口选择过程中进行优化,减少了计算量。实验结果表明,改进后的算法提高了匹配正确率且计算时间缩短了近5%。 相似文献
16.
Typical stereo algorithms treat disparity estimation and view synthesis as two sequential procedures. In this paper, we consider stereo matching and view synthesis as two complementary components, and present a novel iterative refinement model for joint view synthesis and disparity refinement. To achieve the mutual promotion between view synthesis and disparity refinement, we apply two key strategies, disparity maps fusion and disparity-assisted plane sweep-based rendering (DAPSR). On the one hand, the disparity maps fusion strategy is applied to generate disparity map from synthesized view and input views. This strategy is able to detect and counteract disparity errors caused by potential artifacts from synthesized view. On the other hand, the DAPSR is used for view synthesis and updating, and is able to weaken the interpolation errors caused by outliers in the disparity maps. Experiments onMiddlebury benchmarks demonstrate that by introducing the synthesized view, disparity errors due to large occluded region and large baseline are eliminated effectively and the synthesis quality is greatly improved. 相似文献
17.
针对双目视觉立体匹配中的视差优化问题,提出一种基于稳定树形结构的视差优化算法.在双目匹配问题中,视差可以通过检测左右眼2张视觉成像图片中的对应点的信息来计算得出,以生成三维深度图像,继而通过视差优化这一步骤提高三维深度图像的质量.从计算视差中支持域的角度出发,用稳定度的概念来衡量支持域的特征;通过基于稳定度的树结构来评估和重构支持域,用于之后的代价聚合,以减少视差错误.除了室内图片,文中方法还被拓展到了真实路面的数据集,其在移除大块视差错误和整合碎片上取得了明显优于其他方法的效果;与传统的基于树结构的方法相比,在保持精确度的同时降低了70%的聚合时间,极大地提高了视差优化的速度. 相似文献
18.
Asmaa Hosni Michael Bleyer Margrit Gelautz 《Computer Vision and Image Understanding》2013,117(6):620-632
In recent years, local stereo matching algorithms have again become very popular in the stereo community. This is mainly due to the introduction of adaptive support weight algorithms that can for the first time produce results that are on par with global stereo methods. The crux in these adaptive support weight methods is to assign an individual weight to each pixel within the support window. Adaptive support weight algorithms differ mainly in the manner in which this weight computation is carried out.In this paper we present an extensive evaluation study. We evaluate the performance of various methods for computing adaptive support weights including the original bilateral filter-based weights, as well as more recent approaches based on geodesic distances or on the guided filter. To obtain reliable findings, we test these different weight functions on a large set of 35 ground truth disparity pairs. We have implemented all approaches on the GPU, which allows for a fair comparison of run time on modern hardware platforms. Apart from the standard local matching using fronto-parallel windows, we also embed the competing weight functions into the recent PatchMatch Stereo approach, which uses slanted sub-pixel windows and represents a state-of-the-art local algorithm. In the final part of the paper, we aim at shedding light on general points of adaptive support weight matching, which, for example, includes a discussion about symmetric versus asymmetric support weight approaches. 相似文献
19.
针对传统Census变换在视差不连续区域和噪声干扰情况下误匹配率较高的情况,提出了一种利用邻域相关信息的改进Census变换立体匹配算法。根据邻域像素的相关信息,将传统的Census变换中像素与邻域像素的差异应用2位信息表示,使变换后的图像在视差不连续区域的信息表示更为丰富,同时减少噪声对匹配质量的影响。通过并行化自适应匹配代价聚合、亚像素插值、左右一致性约束、遮挡区插值,最终得到了稠密视差图。经Middlebury立体图片测试表明,该算法结构简单,复杂度低,具有较高的鲁棒性,有效地提高了匹配精度。 相似文献