首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
通过调节三组水箱高压喷嘴冷却水的强度(轧制速度1.48m/s,喷嘴内径80mm,精轧前1^#水箱水压≤0.3MPa,精轧后2^#水箱水压≥1.0MPa,3B水箱水压≥1.0NPa),控制Φ60mm GCr15轴承钢终轧温度950℃,喷水后返红温度为680℃,使成品材网状为1.5~2.0级,稳定达到标准要求。  相似文献   

2.
连轧GCr15轴承钢的控轧控冷工艺   总被引:5,自引:0,他引:5  
王东兴  肖攸毅 《特殊钢》2004,25(3):48-49
大冶特钢用 6 5 0连轧机组 KOCKS轧机 DSC控轧控冷系统生产Φ12~ 72mmGCr15轴承钢 ,DSC水冷控制系统允许来料温差 5 0℃ ,终轧温度控制精度± 10℃。由Φ32mm、Φ4 5mm和Φ4 8mm 3个规格GCr15轴承钢的生产结果表明 ,当钢棒终轧温度控制在 74 0~ 82 0℃ ,轧后快冷至 72 0~ 780℃ ,GCr15轴承钢的网状碳化物≤ 2 .5级 ,组织均匀细小。最佳终轧温度为 74 0~ 75 0℃。  相似文献   

3.
轴承钢GCr15棒材产品低温精轧的研究   总被引:2,自引:0,他引:2  
刘剑恒 《钢铁》2005,40(11):49-52
采用国外引进的可实现低温精轧的生产线,对轴承钢GCr15棒材产品进行了低温精轧,通过低温精轧降低了网状碳化物级别,减少了球化退火时间。研究得到了低温精轧轧制GCr15时以控制网状碳化物级别为目标的轧制温度范围为750~840℃,轧后冷却温度范围为600~680℃,同时也研究得到了低温精轧轧制GCr15时以控制网状碳化物级别及减少球化退火时间为目标的轧制温度范围为750~800℃,轧后冷却温度范围为600~680℃。通过该研究网状碳化物级别达到了2级以下,球化退火时间由原18h减少到了11h。  相似文献   

4.
终轧温度对GCr15轴承钢网状碳化物析出的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了终轧温度(750~900℃)和成品规格(Φ12 mm和Φ5.5 mm)对GCr15轴承钢网状碳化物析出的影响。结果表明,当轧制规格为Φ12 mm、终轧温度为800℃时,碳化物网状级别最低,为1.5,终轧温度降至750℃时,碳化物网状级别增加至2.0;当轧制规格为Φ5.5 mm、终轧温度为850℃时,碳化物网状级别最低,为1.5,终轧温度在800℃时碳化物网状级别又升高至2.5。小规格轧材终轧温度过低,不利于网状碳化物析出的抑制,最佳终轧温度与轧制规格有关。  相似文献   

5.
杨洪波  朱伏先  马宝国  刘相华 《钢铁》2009,44(10):66-66
 通过提高GCr15轴承钢φ10mm线材预精轧温度的工业试验,得到了网状碳化物少的细片状珠光体组织,利用实验室热模拟的方法对工业试验现象做了进一步分析。结果表明:当预精轧温度为944℃时,试验钢网状碳化物的析出时刻全部处于快速冷却阶段,球化退火后渗碳体颗粒均匀细小,网状级别可降低至1.5级,布氏硬度为202.72,强韧性能均较高,满足GB/T18254-2002《高碳铬轴承钢》和实际生产对GCr15轴承钢退火材的要求。  相似文献   

6.
大断面轴承钢控温轧制工艺与实验研究   总被引:1,自引:0,他引:1  
李胜利  王国栋  刘相华  李瑛 《钢铁》2007,42(3):41-43
在分析轴承钢高温奥氏体再结晶规律的基础上,提出了抑制网状碳化物的控温轧制工艺,即大断面轴承钢采用900 ℃终轧,轧后以大于3 ℃/s的冷速冷却到700~550 ℃.利用有限元技术,模拟分析了工艺的可行性.现场实验结果表明,网状碳化物级别合格率大幅提升到77.3%,效果显著.  相似文献   

7.
碳化物均匀性是影响轴承疲劳性能主要因素之一,对钢厂采用不同工艺生产的GCr15钢制成的钢球进行压碎试验,并对压碎后的钢球进行碳化物网状、带状分析。试验结果表明,延长高温扩散时间后,压碎负荷值提升;在此基础上进行控轧控冷,压碎负荷值进一步提升,并且提升幅度更显著。碳化物颗粒处于2.5~6μm,碳化物颗粒越大,压碎负荷值越小;坯料高温扩散温度1220~1240℃、时间16 h,且盘条终轧温度750~800℃、冷却速度4~5℃/s工艺生产的原材料制成钢球后的压碎负荷均值最高,达到了251.581kN。  相似文献   

8.
应用Gleeble-3500热/力模拟试验机研究了轧后冷速(20—0.5℃/s)、卷取温度(630—500℃)、精轧初始温度(1000—900℃)、末道次精轧温度(860~750℃)对X65管线钢(0.08%C、1.38%Mn、0.032%Nb、0.041%V、50×10^-6N)显微组织的影响。结果表明,增加轧后冷却速度、减小950℃左右的压下量,降低终轧和卷取温度可细化板材组织。提出150mm×1700mm板坯轧成7.1mm成品板的轧制温度为:1150—1200℃加热,≤1130℃粗轧至35mm,950—1020℃精轧,≤830℃终轧,≤580℃卷取,其产品力学性能满足标准要求。  相似文献   

9.
针对生产轴承钢棒材产品出现的网状碳化物问题,以国内某厂棒材热连轧生产线为依据,对GCrl5轴承钢轧后进行快速控制冷却的温度场进行模拟研究,并运用于实际生产中,取得了较好的效果。结合现场条件所能采用的各种冷却工艺,利用计算机模拟方法,对冷却工艺进行了优化分析,使得GCr15轴承钢20~60的产品的网状级别≤2.0级,解决了中小规格棒材轴承钢网状碳化物达不到标准要求的问题。  相似文献   

10.
控轧控冷改善GCr15钢网状碳化物   总被引:1,自引:0,他引:1  
韩逊 《特钢技术》2011,(3):27-31
为了改善碳化物网状级别,本课题是在高温再结晶区终轧(终轧温度约950℃)后进行快速冷却,并控制终冷温度在780℃~830℃之间,试验的结论是确有明显改善。同时又从机理上给予了进一步的分析。  相似文献   

11.
 在Gleeble-1500D热模拟试验机上进行单轴热压缩试验,研究了形变温度对GCr15SiMn钢的组织尤其是网状碳化物的影响。利用连续度系数来定量表征网状碳化物的连续程度。综合分析了形变温度对晶粒尺寸以及网状碳化物的连续度系数的影响。结果表明:随形变温度的升高,网状碳化物的连续性与晶粒尺寸的变化规律保持较好的一致性。网状碳化物的破碎程度随形变温度的降低而增大。综合考虑网状碳化物连续程度、晶粒尺寸以及变形抗力等因素,在轧后不控冷的条件下,GCr15SiMn的终轧温度宜定在800~850 ℃,其中以850 ℃为最佳。  相似文献   

12.
左锦中  何西  赵阳  周苑  陈廷军 《特殊钢》2022,43(6):60-65
利用热膨胀仪、热模拟试验机、金相显微镜、场发射扫描电镜等测定了100Cr6轴承钢的CCT曲线,试验研究了热压缩及控轧控冷对网状碳化物析出行为的影响。结果表明:第二道次压缩温度从850℃降低至700℃时,奥氏体再结晶细化向未再结晶转变,二次碳化物逐步由晶界封闭网状向半封闭条状、短杆状再向沿拉长的奥氏体晶界链状转变,750~800℃内变形碳化物细小、分散;Φ10 mm 100Cr6线材采用910℃降至770℃温度控轧+快速冷却工艺,其热轧态、球化退火及淬回火后碳化物分布均匀性逐步提升,奥氏体晶粒由8.0级细化至10.0级,晶界碳化物由封闭网状向断续条状转变,平均厚度从0.54μm降低至0.11μm,网状级别由3.0级占比33%降低至≤2.0级占比100%,可缩短球化退火时间及提高轴承的疲劳寿命。  相似文献   

13.
研究了高碳铬不锈轴承钢“孪晶碳化物”(直线状和链状碳化物)的影响因素及形成原因,结果表明:加热温度达到1140℃,退火后开始出现沿晶界分布的链状碳化物;加热温度≥1160℃,退火后出现大量直线状和链状两种形态的碳化物。材料从高温直接冷却时,温度≥1080℃并且冷却速度≤80℃/h可能析出链状碳化物,并且温度越高冷却速度越慢析出的可能性就越大。直线状碳化物形成原因为:材料加热温度过高.晶粒长大的过程中晶界迁移时偶然发生堆垛错误形成了生长孪晶,在随后的退火过程中碳化物向奥氏体挛晶界面沉淀而形成,是真正意义上的孪晶碳化物。链状碳化物是由于材料过热或者局部过热,在随后冷却过程中碳化物沿奥氏体晶界析出而形成的,本质上是一种网状碳化物。  相似文献   

14.
河钢宣钢针对轴承钢产品出现的网状碳化物问题,引进了穿水冷却工艺,并实施了GCr15轴承钢轧后快速冷却。通过优化冷却工艺,GCr15轴承钢Φ22~32 mm产品的网状级别≦2. 0级,小规格轴承钢网状碳化物均达到国家标准要求。  相似文献   

15.
采用横截面为350mm×2 320mm的钢坯轧制横截面为100mm×2 360mm的Q345E-Z35。在粗轧阶段以高于动态再结晶临界变形量和形状系数l/h≥0.53的条件下,经过不同的终轧温度和返红温度试验,最终确定精轧阶段终轧温度控制在780℃左右,返红温度控制在610℃左右,生产出的钢板具有优异的力学性能和层状撕裂抗性。  相似文献   

16.
为减轻20CrMoH齿轮钢带状组织,进行了Φ80mm棒材在精轧区的3种穿水冷却试验。结果表明:精轧前穿水冷却,轧制温度处在两相区轧制,带状组织级别为2.5~3.0级;精轧后以及精轧前、后进行穿水冷却,轧制温度处在奥氏体区轧制,带状组织级别为1.0~2.0级,尤其在奥氏体未再结晶区轧制时,带状组织级别为1.0~1.5级。  相似文献   

17.
朱红一 《特殊钢》2009,30(3):50-51
安阳钢铁公司通过100 t转炉-100 t LF-200 mm×1 500 mm连铸机-2800 mm中板轧机生产流程开发了Nb微合金化高强度船板。生产数据统计结果表明,通过精确控制钢的成分(%:0.13~0.16C、0.33~0.43Si、1.31~1.42Mn、0.007~0.014P、0.005~0.0185、0.021~0.039A1、0.018~0.022Nb),精轧开始温度950℃,精轧累积压下率≥50%,终轧温度780~850℃,使AH36牌号6~25 mm钢板的晶粒度为9~9.5级,屈服强度360~475 MPa,抗拉强度490~610 MPa,δ5伸长率18%~36%,0℃冲击功110~221J。  相似文献   

18.
吕晓芳  孙伟  杜慧起 《特殊钢》2021,42(2):68-71
采用控制轧制工艺对0.14%~0.18%C,1.40%~1.60%Mn Q355D钢250 mm连铸板坯进行热轧,结果表明,在粗轧温度1050~1130℃、精轧温度920℃、终轧温度880℃控制轧制条件下,终冷温度在670℃以下生产的厚板组织细小均匀,生产70mm和80mm规格厚板性能符合Q355D级别要求,并且Z25断面收缩率(RA)为58%~64%满足Z25方向RA≥25%的要求。  相似文献   

19.
热轧温度对易拉罐用3004H19的力学性能和金相组织的影响   总被引:2,自引:0,他引:2  
本文采用力学性能测试、金相、TEM和SEM观察分析技术,研究了热粗轧温度和热精轧温度对3004H19易闰罐用特薄铝板的内部组织和力学性能的影响,并进行了分析讨论。实验结果表明:第一,当热粗轧温度≥733K,热精轧温度≥ 633K时,3004H19薄板中具有较好的综合性能;第二,随着热精轧开轧温度的升高,热精轧终了坯料组织纤维状减弱,回复与再晶组织增强。且当热精轧温度达到634K时,位错胞增大,有回  相似文献   

20.
用超快速冷却新工艺生产GCr15轴承钢   总被引:2,自引:0,他引:2  
 通过对GCr15轴承钢高温终轧后进行冷却速度大于100 ℃/s的超快速冷却试验,研究了轧后不同冷却工艺制度对组织形态和网状碳化物的影响,结果表明,高温终轧后进行超快速冷却可抑制网状碳化物析出,发生伪共析转变而得到细片层间距的珠光体型组织——索氏体,并促进珠光体形核和减小碳原子扩散能力,达到细化晶粒的目的,得到利于球化退火的预备组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号