首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The set of glass ionomer cement (GIC) is accelerated by application of ultrasound. Although GIC has somewhat displaced zinc polycarboxylate cement (ZPC) in dental applications the latter is still extensively used. Like GIC, it provides direct adhesion to tooth and can provide F release, but is more radiopaque and biocompatible than GIC. The aim of this study is to examine the effect of ultrasound on the setting of ZPC using Fourier transform infra red spectroscopy and any interaction with SnF2 addition. ZPC with and without SnF2 addition (+/−S) at luting (L) 2:1 P/L ratio and restorative (R) 4:1 P/L ratio consistencies. Ultrasound is applied to the cement using Piezon-Master 400, EMS, Switzerland at 60 s from start of mixing for 15 s. The ratios of absorbance peak height at 1,400 cm−1 –COO to that at 1,630 cm−1 –COOH were measured and compared those obtained for the cement not treated with US. These values were taken at the elapsed time at which no further change in spectrum [ratio] was observed at room temperature [10–20 min]. The US results are taken at 2 or 3 min. No US: R/+S (1.09), R/−S (1.2), L/+S (1.07), L/−S (1.04); US: R/+S (1.50), R/−S (1.64), L/+S (1.38), L/−S (1.05). The results show all four ZPC formulations are very sensitive to ultrasound whether with or without SnF2. Reducing US to 10 s produces lower initial ratios but these increase up to 10 min when very high ratios (>2) are obtained. Previous studies with restorative GICs found that 40–55 s US was needed to produce the effect found with 15 s on ZPCs. ZPC powder is more basic than GIC glass; this may account for ZPC’s greater sensitivity to US. Ultrasound may provide a useful adjunct to the clinical use of ZPC both as luting agent and temporary restorative.  相似文献   

2.
Cosmic ray physics in the 1012–1015 eV primary energy range is among the main scientific goals of the ARGO-YBJ experiment. The detector, located at the Cosmic Ray Observatory of Yangbajing (Tibet, P.R. China) at 4300 m a.s.l., is a full coverage Extensive Air Shower array consisting of a carpet of Resistive Plate Chambers of about 6000 m2. The apparatus layout, performance and location offer a unique possibility to make a deep study of several characteristics of the hadronic component of the cosmic ray flux in an energy window marked by the transition from direct to indirect measurements. In this work we will focus on the experimental results concerning the measurements of the primary cosmic ray energy spectrum and of the proton-air cross-section. The all-particle spectrum has been measured, by using a bayesian unfolding technique, in the 1–100 TeV energy region. The proton-air cross-section has been measured at the same energies, by exploiting the cosmic ray flux attenuation for different atmospheric depths (i.e. zenith angles). The total proton–proton cross-section has then been estimated at center of mass energies between 70 and 500 GeV, where no accelerator data are currently available.  相似文献   

3.
In this paper the mechanical properties of magnesium potassium phosphate cements used for the Stabilization/Solidification (S/S) of galvanic wastes were investigated. Surrogate wastes (metal nitrate dissolutions) were employed containing Cd, Cr(III), Cu, Ni, Pb or Zn at a concentration of 25 g dm−3 and different water-to-solid (W/S) ratios (0.3, 0.4, 0.5 and 0.6 dm3 kg−1) have been employed. Cements were prepared by mixing hard burned magnesia of about 70% purity with potassium dihydrogen phosphate. Compressive strength and tensile strength of specimens were determined. In addition the volume of permeable voids was measured. It was found that when comparing pastes that the volume of permeable voids increases and mechanical strength decreases with the increase of water-to-solid ratio (W/S). Nevertheless pastes with the same material proportions containing different metals show different mechanical strength values. The hydration products were analyzed by XRD. With the increase of water content not previously reported hydration compound was detected: bobierrite.  相似文献   

4.
π-Conjugated supramolecular with higher delocalization of electrons has attracted considerable attention in enhancing the charge transfer in photocatalysis. However, those conjugated macromolecules often possess varied rotational geometries, which will significantly deteriorate charge mobility but still inexplicitly. Herein, we reported diversified PDI polymers with intramolecular angles of 94.7°, 149.7° and 176.3° to explore the role of π-conjugated non-planar molecules. Density functional theory (DFT) calculations and experimental results show that vertical structural PDIMH has antibonding in anisotropic polarizable monomer to generate a macro-dipole, which greatly expands the built-in electric field and facilitates charge transfer and exciton dissociation. On the other hand, the vertical angle is favorable for the face-to-face overlap of the homogeneous molecules, which will create a carrier migration channel and promote carrier separation. Notably, PDIMH exhibited highly effective photocatalytic sterilization (near 100% in 2 h) and benzylamine oxidation (conversion rate up to 300 mmol g−1h−1), which is superior to other ever reported catalysts. This work provides a new interpretation for regulating molecular geometry in developing highly efficient photocatalyst to solve future sustainable issues.  相似文献   

5.
《Vacuum》2008,82(11-12):1507-1510
TiN coatings can be obtained in a relatively wide range of compositions around stoichiometry. Changing the stoichiometry around the 1:1 composition broadens the spectrum of colors and can modify the mechanical properties as compared with those of stoichiometric TiN. In this work, we present the deposition of TiN coatings by using a metallic Ti cathode and varying the nitrogen partial pressure in a cathodic arc evaporation reactive process. The composition, crystalline structure, hardness and color of the different samples are characterized, and the effect of deposition pressure is discussed. The hardest coatings were deposited in the interval of deposition pressures between 5 and 20×10−3 mbar. From the reflectance spectra in the visible range, a dominant wavelength of 581–582 nm is found for all the TiN samples, very close to that of the pure gold reference spectrum (579 nm) with purity colors that increase with the deposition pressure from 0.67 to 0.84 and approaches the color purity measured for the pure gold reference (0.91).  相似文献   

6.
The isochoric heat capacity (c v ) of difluoromethane (R32) and a mixture of 51.11 mass% R32 + 48.89 mass% pentafluoroethane (R125) was measured at temperatures from 268 K to 328 K and at pressures up to 30 MPa. The reported density measurements are in the single-phase region and cover a range of ρ > 800 kg · m−3. The measured data are compared with results measured by other researchers. Also, the measured data are examined with available equations of state. As a result, it is found that the measured c v ’s agree well with those of other researchers in the measurement range of the present study.  相似文献   

7.
The title compound was synthesized by employing high-temperature solution reaction methods at 840 °C. Single-crystal XRD analysis showed that it crystallizes in the orthorhombic noncentrosymmetric space group Fdd2, with unit cell parameters a = 13.326(3) Å, b = 14.072(3) Å, c = 10.238(2) Å, Z = 16, and V = 1919.9(7) Å3. It has two independent and interpenetrating 3D frameworks consisting of [B4O9]6− groups bridged by O atoms, with intersecting channels occupied by Na+ and Li+ cations. The IR spectrum further confirmed the presence of both BO3 and BO4 groups. UV–vis diffuse reflectance spectrum showed a band gap of about 3.88 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 337.8 nm. Furthermore we have performed theoretical calculations by employing the state-of-the-art all-electron full potential linearized augmented plane wave (FP-LAPW) method to solve the Kohn Sham equations. We have optimized the atomic positions taken from our XRD data by minimizing the forces. The optimized atomic positions are used to calculate the electronic band structure, the atomic site-decomposed density of states, electron charge density and the chemical bonding features. The calculated electronic band structure and densities of states suggested that this single crystal possesses a wide energy band gap of about 2.80 eV using the local density approximation, 2.91 eV by generalized gradient approximation, 3.21 eV for the Engel–Vosko generalized gradient approximation and 3.81 eV using modified Becke–Johnson potential (mBJ). This compares well with our experimentally measured energy band gap of 3.88 eV. From our calculated electron charge density distribution, we obtain an image of the electron clouds that surround the molecules in the average unit cell of the crystal. The chemical bonding features were analyzed and the substantial covalent interactions were observed between O and O, B and O, Li and O as well as Na and O atoms.  相似文献   

8.
The small size of nanomaterials deposited by either focused ions or electron beams has prevented the determination of reliable thermal property data by existing methods. A new method is described that uses a suspended platinum hot film to measure the thermal conductivity of a nanoscale deposition. The cross section of the Pt film needs to be as small as 50 nm × 500 nm to have sufficient sensitivity to detect the effect of the beam-induced nanodeposition. A direct current heating method is used before and after the deposition, and the change in the average temperature increase of the Pt hot film gives the thermal conductivity of the additional deposited material. In order to estimate the error introduced by the one-dimensional analytical model employed, a two-dimensional numerical simulation was conducted. It confirmed the reliability of this method for situations where the deposit extends onto the terminals by (1 μm or more. Measurements of amorphous carbon (a-C) films fabricated by electron beam induced deposition (EBID) produced thermal conductivities of 0.61 W · m−1 · K−1 to 0.73 W · m−1 · K−1 at 100 K to 340 K, values in good agreement with those of a-C thin films reported in the past.  相似文献   

9.
In this paper, we report synthesis and characterization of polypyrrole (PPy) doped with a new water-soluble ferrocene derivative of p-ferrocenyl benzene sulfonic acid (BSAFc). The ferromagnetic conductive PPy powder was obtained by chemical polymerization. XPS and FT-IR were used to clarify the structure of PPy powder and confirm the existence of ferrocene group in the PPy powder. A complete understanding of the electronic structure of iron in PPy powder was achieved by Mössbauer spectrum measured at room temperature, which indicates that 57Fe in the PPy powder is in the low-spin electronic structure of trivalence. The PPy powder exhibited an electrical conductivity of about 100 S/cm at room temperature, a coercive force of 20 Oe and saturation magnetization of 1.76 emu/g at low temperature of 1.8 K. Thermogravimetric analysis (TGA) showed that the PPy powder had the same thermostability as normal PPy. The electro-active PPy freestanding film was also synthesized by doping with the new water-soluble ferrocene derivative via electrochemical polymerization, which is significant for developing the application of the PPy film in secondary battery, membrane electrode and so on.  相似文献   

10.
Lead, which is often used as a shielding material, contains 210Pb (T1/2=22.3 y). The 46.54 keV γ-intensity of 210Pb can be easily reduced by an inner lining, but the bremsstrahlung caused by the β-decay of its daughter, 210Bi, with a maximal electron energy of 1.16 MeV, will contribute to the gamma detector background. The spectrum of this bremsstrahlung is calculated by numerically fitting the β-spectrum and integrating the Koch–Motz formula. The absorption of the bremsstrahlung in the lead and detection efficiencies for the HPGe detector are calculated by the effective solid angle algorithm, using corrections for the photopeak/Compton ratio of cross-sections in Ge. By comparison with the measured background spectrum, it is shown that, for the lead with 25 Bq/kg of 210Pb up to 500 keV of gamma spectrum, the bremsstrahlung contribution to the background is about 20% for our surface-based detector system. Also, we compared our calculations with a Monte Carlo simulation of another detector system with a shield containing 1 Bq/kg of 210Pb and found that our analytical method gives a value of roughly two times higher than the Monte Carlo one for the total bremsstrahlung contribution. The quality of the analytical semi-empirical method is proved by the reasonable agreement with the experimental results published.  相似文献   

11.
《Advanced Powder Technology》2020,31(11):4541-4551
In this study we synthesized LiFePO4/carbon/reduced graphene oxide (LFP/C/rGO) composite cathode materials using a method involving sol–gel processing, spray-drying, and calcination. To improve the electrochemical performance of LFP/C, we tested graphene oxides (GOs) of various morphologies as conductive additives, including pristine GO, three-dimensional GO, and hydrothermal porous GO (HTGO). Among our samples, the cathode material prepared through spray-drying with the addition of 1 wt% of HTGO (denoted SP-LFP/C/1%rHTGO) displayed the best electrochemical performance; its discharge capacities at 0.1C, 1C, 5C, and 10C were 160.5, 151.8, 138.8, and 130.3 mA h g−1, respectively. From measurements of its long-term cycling performance, the discharge capacity in the first cycle and the capacity retention after 30 cycles at 0.1C were 160.2 mA h g−1 and 99.6%, respectively; at 10C, these values were 132.2 mA h g−1 and 91.8%, respectively. The electronic conductivity of SP-LFP/C/1%rHTGO (6.58 × 10−5 S cm−1) was higher than that of the pristine LFP/C (9.24 × 10−6 S cm−1). The Li+ ion diffusivities (DLi+) of the SP-LFP/C/1%HTGO cathode, measured using AC impedance (3.91 × 10−13 cm2 s−1) and cyclic voltammetry (6.66 × 10−10 cm2 s−1 for discharge), were superior to those of the LFP/C cathode (9.31 × 10−15 cm2 s−1 and 1.79 × 10−10 cm2 s−1 for discharge, respectively). Galvanostatic intermittent titration revealed that the value of DLi+ was located in a reasonable range from 1 × 10−10 to 1 × 10−17 cm2 s−1; its value dropped to its lowest point when the state of charge was close to 50%. Thus, the use of spray-drying and the addition of conductive HTGO (having a 3D wrinkled morphology and interconnected pore structure) can enhance the electronic conductivity and Li+ ion diffusivity of LFP/C cathode materials, thereby improving the electrochemical performance significantly.  相似文献   

12.
The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · mol−1 without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · mol−1 was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated.  相似文献   

13.
Manganese-doped BaAl12O19 green phosphor was prepared using a self-propagating (combustion) synthesis. Powder X-ray diffraction and scanning electron microscopy were used to characterize the as-prepared combustion product. A room temperature photoluminescence study shows an emission line at 513 nm corresponding to a transition from the upper 4T1 → 6A1 ground state of Mn2+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits six line hyperfine structure at g = 1.981. From the EPR spectrum, the spin-Hamiltonian parameters have been evaluated. The g value indicates that the site symmetry around Mn2+ ions is distorted tetrahedral. The number of spins (N) participating in the resonance for g = 1.981 is measured as a function of temperature. The paramagnetic susceptibility (χ) is calculated from the EPR data at various temperatures. From the plot 1/χ versus T, the Curie constant (C) and Curie paramagnetic temperature (θp) have been evaluated and discussed.  相似文献   

14.
《Advanced Powder Technology》2020,31(6):2555-2565
Three samples of ZnO quantum dots (ZQDs) were synthesized by a modified sol–gel method at different temperatures for 3 h. The first sample (S1) was prepared at room temperature 27 °C, while second and third samples (S2) and (S3) were prepared by the calcination process at 500 and 900 °C, respectively. A study of XRD and TEM determines the purity, high crystallinity and the presence of elongated shape of the prepared catalysts. On using TEM, DRS and EBT analysis, the crystallite size values, bandgap energy, and active surface area were (7.1 nm, 3.49 eV, and 150.1 m2/g), (9.8 nm, 3.45 eV and 112.2 m2/g) and (13.5 nm, 3.39 eV and 78.94 m2/g) for S1, S2, and S3, respectively. The Photoluminescence properties showed that the fluorescence rate for S1 was doubled the observed one in the S2 sample. The photodegradation results of both methyl orange as an industrial raw material and real industrial wastewater of S1 sample showed the finest activity when compared with the rest samples. It was cleared from the collecting data that the photocatalytic performance decreases with the crystallite size increases The mineralization efficiency of the real industrial wastewater that exposed to sunlight for six months were evaluated according to the allowed COD limit for Egyptian Environmental Law, In addition the recycling process for reusable for ZnO prepared samples for 8 times investigated and evaluated.  相似文献   

15.
A facile approach was developed for synthesis of carbon hollow microspheres (CHM) via carbonization of the hollow polymer microspheres prepared from polymerization in the presence of l-lysine acted as in situ template. The physical and chemical structures of the samples were investigated by X-ray powder diffraction, Raman spectrum, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM images show that the products consist of a large scale of monodisperse CHM with a size of about 1.1–1.3 μm. Furthermore, the resulting CHMs possess a surface area of 559 m2 g−1 and a pore volume of 0.27 cm3 g−1. The morphology and the size of the as-obtained samples can be controlled by the polymerization temperature, polymerization time, and the dosage of l-lysine. Moreover, a possible formation mechanism of the CHM has been put forward according to the experimental data available.  相似文献   

16.
Conductive biomass carbon possesses unique properties of excellent conductivity and outstanding thermal stability, which can be widely used as conductive additive. However, building the high-dense conductive biomass carbon with highly graphitized microcrystals at a lower carbonization temperature is still a major challenge because of structural disorder and low crystallinity of source material. Herein, a simple capillary evaporation method to efficiently build the high-dense conductive ramie carbon (hd-CRC) with the higher tap density of 0.47 cm3 g−1 than commercialized Super-C45 (0.16 cm3 g−1) is reported. Such highly graphitized microcrystals of hd-CRC can achieve the high electrical conductivity of 94.55 S cm−1 at the yield strength of 92.04 MPa , which is higher than commercialized Super-C45 (83.92 S cm−1 at 92.04 MPa). As a demonstration, hd-CRC based symmetrical supercapacitors possess a highly volumetric energy density of 9.01 Wh L−1 at 25.87 kW L−1, much more than those of commercialized Super-C45 (5.06 Wh L−1 and 19.30 kW L−1). Remarkably, the flexible package supercapacitor remarkably presents a low leakage current of 10.27 mA and low equivalent series resistance of 3.93 mΩ. Evidently, this work is a meaningful step toward high-dense conductive biomass carbon from traditional biomass graphite carbon, greatly promoting the highly-volumetric–performance supercapacitors.  相似文献   

17.
Raman scattering is studied here for Hg1−xCdxTe (x = 0.3) samples implanted with 180-keV of B11 ions with various doses up to 1 × 1015 cm−2. Considering disorder in the implanted HgCdTe material, the correlation length of Raman active optical phonons is determined as a short range order in the nanocrystals. Phonon softening and asymmetric broadening are investigated for HgTe like LO and TO phonon modes in the Raman spectrum while CdTe like modes almost disappeared for the dose greater than 5 × 1013 cm−2. Disorder is measured quantitatively for wide ranges of doses on the basis of phonon confinement model. Nanostructures of the near-surface implantation-induced damage layer are known to consist of a mixture of amorphous HgCdTe and its nanocrystals. A significant reduction of the nanocrystallites size is reported here with increasing dose i.e. L = 34–46 A0 at dose of 1 × 1015 cm−2.  相似文献   

18.
Graphene oxide (GO) was added to a polymer composites system consisting of surfactant-wrapped/doped polyaniline (PANI) and divinylbenzene (DVB). The nanocomposites were fabricated by a simple blending, ultrasonic dispersion and curing process. The new composites show higher conductivity (0.02–9.8 S/cm) than the other reported polymer system filled with PANI (10−9–10−1 S/cm). With only 0.45 wt% loading of GO, at least 29% enhancement in electric conductivity and 29.8% increase in bending modulus of the composites were gained. Besides, thermal stability of the composites was also improved. UV–Vis spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) revealed that addition of GO improves the dispersion of PANI in the polymer composite, which is the key to realize high conductivity.  相似文献   

19.
With an extremely high theoretical energy density, poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur (Li-S) batteries are emerging as one of the most feasible and safest battery storage systems. However, the long-term cycling performance is severely impeded by polysulfides (Li2Sn, n = 4–8) shuttling and terrible electrode passivation from the electronic insulating Li2S. Here, a novel cathode through chemically grafted 1-Ethyl-3-methylimidazolium bromide (EMIM+-Br) to carbon nanotube (CNTs) for PEO-based Li-S batteries is reported (CNTs@EMIM-Br/S). Concretely, bi-functional mediator EMIM+-Br not only inhibits the polysulfides shuttling by strong chemical interactions via EMIM+, but also facilitates the electrochemical kinetics for promoting the formation of 3D particulate Li2S through high donor anion (Br). Satisfactorily, dual-function CNTs@EMIM-Br/S cathode exhibits high sulfur utilization with the capacity of up to 1298 mAh g−1, and keeps high capacity retention of 80.2% at 0.2 C after 350 cycles, exceeding that of many reported PEO-based solid-state Li-S batteries. This work will open a new door for rationally designed architecture to enable the practical applications of advanced Li-S batteries.  相似文献   

20.
The thermoelectric (TE) performance of organic materials is limited by the coupling of Seebeck coefficient and electrical conductivity. Herein a new strategy is reported to boost the Seebeck coefficient of conjugated polymer without significantly reducing the electrical conductivity by incorporation of an ionic additive DPPNMe3Br . The doped polymer PDPP - EDOT thin film exhibits high electrical conductivity up to 1377 ± 109 S cm−1 but low Seebeck coefficient below 30 µV K−1 and a maximum power factor of 59 ± 10 µW m−1 K−2. Interestingly, incorporation of small amount (at a molar ratio of 1:30) of DPPNMe3Br into PDPP - EDOT results in the significant enhancement of Seebeck coefficient along with the slight decrease of electrical conductivity after doping. Consequently, the power factor (PF) is boosted to 571 ± 38 µW m−1 K−2 and ZT reaches 0.28 ± 0.02 at 130 °C, which is among the highest for the reported organic TE materials. Based on the theoretical calculation, it is assumed that the enhancement of TE performance for the doped PDPP - EDOT by DPPNMe3Br is mainly attributed to the increase of energetic disorder for PDPP - EDOT .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号