首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/ nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 A in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 A. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 A and one carboxyl-O at 2.84 A in the first shell, and two second shell C atoms at an average distance of 3.14 A, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.  相似文献   

2.
The distribution of different iron (Fe) species in soils, sediments, and surface waters has a large influence on the mobility and availability of Fe, other nutrients, and potentially toxic trace elements. However, the knowledge about the specific forms of Fe that occurs in these systems is limited, especially regarding associations of Fe with natural organic matter (NOM). In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to characterize Fe(III) in organic soils (pH 4.6-6.0) with varying natural Fe content. The EXAFS data were subjected to wavelet transform analysis, to facilitate the identification of the nature of backscattering atoms, and to conventional EXAFS data fitting. The collective results showed the existence of two pools of iron: mononuclear Fe(III)-NOM complexes and precipitated Fe(III) (hydr)oxides. In the soil with lowest pH (4.6) and Fe content mononuclear organic complexes were the completely dominating fraction whereas in soils with higher pH and Fe content increasing amounts of Fe (hydr)oxides were detected. These results are of environmental importance, as the different iron pools most likely have markedly different reactivities.  相似文献   

3.
The strong binding of CH3Hg+ to natural organic matter (NOM) in soils and waters determines the speciation of CH3Hg under aerobic conditions and indirectly its bioavailability and rates of demethylation. In lab experiments, halides (Cl, Br, I) were used as competing ligands to determine the strength of CH3Hg+ binding to solid-phase soil organic carbon (SOC) and to dissolved soil organic carbon (DOC) as a function of time, pH, and concentration of halide. Experiments were conducted with native concentrations of CH3Hg (1.7-9.8 ng g(-1)) in organic soils, and equilibrium concentrations of CH3Hg were determined by species-specific-isotope-dilution (SSID) gas-chromatography-induced-coupled-plasma-mass-spectrometry (GC-ICP-MS). A simple model (RS- + CH3Hg+ = CH3HgSR; log KCH3HgSR) was used to simulate the binding to SOC and DOC, in which the binding sites (RSH) were independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. The pKa values of RSH groups were fixed at 8.50 and 9.95, reflecting the two major thiol groups in proteins. Log KCH3HgSR values determined for SOC and DOC were similar, showing a range of 15.6-17.1 for all experiments covering a pH range of 2.0-5.1. Despite large differences in affinities between Cl, Br, and I for CH3Hg+, determined constants were independent of type and concentration of halide used in the experiments (log KCH3HgSR = 16.1-16.7 at pH 3.5-3.6). Even if our log KCH3HgSR values were conditional in that they decreased with pH above 3.5, they were in fair agreement with stability constants determined for the association between CH3Hg+ and thiol groups in well-defined organic molecules (log K1 = 15.7-17.5). Speciation calculations based on our results show that, in absence of substantial concentrations of inorganic sulfides, neutral chloro-complexes (CH3HgCl) and free CH3Hg+ reach concentrations on the order of 10(-17)-10(-18) M at pH 5 in soil solutions with 3 x 10(-5) M of chloride.  相似文献   

4.
Arsenic sorption onto maghemite potentially contributes to arsenic retention in magnetite-based arsenic removal processes because maghemite is the most common oxidation product of magnetite and may form a coating on magnetite surfaces. Such a sorption reaction could also favor arsenic immobilization at redox boundaries in groundwaters. The nature of arsenic adsorption complexes on maghemite particles, at near-neutral pH under anoxic conditions, was investigated using X-ray absorption fine structure (XAFS) spectroscopy at the As K-edge. X-ray absorption near edge structure spectra indicate that As(III) does notoxidize after 24 h in any of the sorption experiments, as already observed in previous studies of As(III) sorption on ferric (oxyhydr)oxides under anoxic conditions. The absence of oxygen in our sorption experiments also limited Fenton oxidation of As(III). Extended XAFS (EXAFS) results indicate that both As(III) and As(V) form inner-sphere complexes on the surface of maghemite, under high surface coverage conditions (approximately 0.6 to 1.0 monolayer), with distinctly different sorption complexes for As(III) and As(V). For As(V), the EXAFS-derived As-Fe distance (approximately 3.35 +/- 0.03 A) indicates the predominance of single binuclear bidentate double-corner complexes (2C). For As(III), the distribution of the As-Fe distance suggests a coexistence of various types of surface complexes characterized by As-Fe distances of approximately 2.90 (+/-0.03) A and approximately 3.45 (+/-0.03) A. This distribution can be interpreted as being due to a dominant contribution from bidentate binuclear double-corner complexes (2C), with additional contributions from bidentate mononuclear edge-sharing (2E) complexes and monodentate mononuclear corner-sharing complexes (1V). The present results yield useful constraints on As(V) and As(III) adsorption on high surface-area powdered maghemite, which may help in modeling the behavior of arsenic at the maghemite-water interface.  相似文献   

5.
Natural organic matter (NOM)-mediated redox cycling of elemental mercury Hg(0) and mercuric Hg(II) is critically important in affecting inorganic mercury transformation and bioavailability. However, these processes are not well understood, particularly in anoxic water and sediments where NOM can be reduced and toxic methylmercury is formed. We show that under dark anoxic conditions reduced organic matter (NOM(re)) simultaneously reduces and oxidizes Hg via different reaction mechanisms. Reduction of Hg(II) is primarily caused by reduced quinones. However, Hg(0) oxidation is controlled by thiol functional groups via oxidative complexation, which is demonstrated by the oxidation of Hg(0) by low-molecular-weight thiol compounds, glutathione, and mercaptoacetic acid, under reducing conditions. Depending on the NOM source, oxidation state, and NOM:Hg ratio, NOM reduces Hg(II) at initial rates ranging from 0.4 to 5.5 h(-1), which are about 2 to 6 times higher than those observed for photochemical reduction of Hg(II) in open surface waters. However, rapid reduction of Hg(II) by NOM(re) can be offset by oxidation of Hg(0) with an estimated initial rate as high as 5.4 h(-1). This dual role of NOM(re) is expected to strongly influence the availability of reactive Hg and thus to have important implications for microbial uptake and methylation in anoxic environments.  相似文献   

6.
Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation--X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)--are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (>10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.  相似文献   

7.
Zinc is one of the most widespread trace metals (TMs) in Earth surface environments and is the most concentrated TM in the downstream section of the Seine River (France) due to significant anthropogenic input from the Paris conurbation. In order to better identify the sources and cycling processes of Zn in this River basin, we investigated seasonal and spatial variations of Zn speciation in suspended particulate matter (SPM) in the oxic water column of the Seine River from upstream to downstream of Paris using synchrotron-based extend X-ray absorption fine structure (EXAFS) spectroscopy at the Zn K-edge. First-neighbor contributions to the EXAFS were analyzed in SPM samples, dried and stored under a dry nitrogen atmosphere or under an ambient oxygenated atmosphere. We found a sulfur first coordination environment around Zn (in the form of amorphous zinc sulfide) in the raw SPM samples stored under dry nitrogen vs an oxygen first coordination environment around Zn in the samples stored in an oxygenated atmosphere. These findings are supported by scanning electron microscopy and energy dispersive X-ray spectrometry observations. Linear combination fitting of the EXAFS data for SPM samples, using a large set of EXAFS spectra of Zn model compounds, indicates dramatic changes in the Zn speciation from upstream to downstream of Paris, with amorphous ZnS particles becoming dominant dowstream. In contrast, Zn species associated with calcite (either adsorbed or incorporated in the structure) are dominant upstream. Other Zn species representing about half of the Zn pool in the SPM consist of Zn-sorbed on iron oxyhydroxides (ferrihydrite and goethite) and, to a lesser extent, Zn-Al layered double hydroxides, Zn incorporated in dioctahedral layers of clay minerals and Zn sorbed to amorphous silica. Our results highlight the importance of preserving the oxidation state in TM speciation studies when sampling suspended matter, even in an oxic water column.  相似文献   

8.
The stability and the formation and dissolution kinetics of mixed trace metal precipitates in soils are currently unknown. The objective of this study was to investigate slow sorption and release processes of Zn and Ni in a loamy soil using a combination of soil column experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy. To investigate slow sorption processes, the soil material was packed into columns and leached with 5400 pore volumes of 10(-2) M CaCl2 solutions containing either ZnCl2 (5.2 x 10(-5) M) or NiCl2 (5.2 x 10(-5) M) or both ZnCl2 and NiCl2 (5.2 x 10(-5) M each). The Zn and Ni concentrations in the column effluents were monitored. The metal breakthrough curves showed that slow sorption processes lead to metal retention, whereby Zn was more strongly retained than Ni. In the experiment with both Zn and Ni present, amounts of Zn and Ni similar to those in the experiments with either Zn or Ni alone were retained. Analysis of soil samples by EXAFS spectroscopy showed that layered double hydroxide (LDH)-type precipitates had formed in all columns and that a mixed ZnNi-LDH had formed in the presence of both Zn and Ni. The dissolution of those precipitates under acidic conditions was assessed by subsequent leaching of the columns with a 10(-2) M CaCl2 solution at pH 3.0 (approximately 3000 pore volumes). When only Zn was present, 95% of the retained Zn was leached at pH 3. In contrast, only 23% of the retained Ni was leached in experiments with Ni alone. When Zn and Ni were present, 90% of the retained Zn and 87% of the retained Ni were released upon acidification. EXAFS analysis revealed that the LDH phases in the Zn experiment and the Zn-Ni experiment had been completely dissolved, while the LDH phase formed in the Ni experiment was still present. The higher resistance of Ni-LDH against dissolution at low pH could also be shown in dissolution studies with synthetic Zn-LDH, Ni-LDH, and ZnNi-LDH. Our results suggest that the individual rates at which Zn and Ni cations enter into the LDH structure determine the composition of the mixed ZnNi-LDH precipitate, and that the LDH composition determines the rate at which the LDH phase dissolves under acidic conditions.  相似文献   

9.
Excitation-emission matrixes (EEMs) of 379 dissolved organic matter (DOM) samples from diverse aquatic environments were modeled by parallel factor analysis (PARAFAC). Thirteen components likely representing groups of similarly fluorescing moieties were found to explain the variation in this data set. Seven of the thirteen components were identified as quinone-like based on comparison of their excitation and emission spectra to spectra of model quinones. These quinone-like fluorophores were found to vary in redox state and degree of conjugation. Two components were identified as amino acid-like based on comparison to tyrosine and tryptophan fluorescence spectra. The other four components are not yet associated with any class of molecules. The quinone-like fluorophores account for about 50% of the fluorescence for every sample analyzed, showing that quinone-like fluorophores are an important and ubiquitous fluorescing moiety and in natural waters. Further, the distribution of the quinone-like fluorophores was evaluated as a function of environmental and laboratory redox gradients. Under reducing conditions, the contribution of the reduced quinone-like fluorophores increased concurrentwith a decrease in the oxidized quinone-like fluorophores, indicating that DOM fluorescence is a function of redox state of quinone-like moieties. Lastly, a ratio of two quinone-like fluorophores was found to explain the variation in the fluorescence index. These results provide new insight into the redox reactivity of DOM and have implications for the application of fluorescence spectroscopy as a tool to characterize DOM.  相似文献   

10.
Investigations by micrometer-scale X-ray fluorescence and X-ray absorption fine structure (micro-XRF and micro-XAFS) recorded in a confocal geometry on a bore core section of a uranium-rich tertiary sediment are performed in order to assess mechanisms leading to immobilization of the uranium during diagenesis. Results show uranium to be present as a tetravalent phosphate and that U(IV) is associated with As(V). Arsenic present is either As(V) or As(O); we found no evidence for As(III). The As(O) is observed to be intimately associated with the surface of Fe(II) nodules and likely arsenopyrite. A hypothesis for the mechanism of uranium immobilization is proposed, where arsenopyrite acted as reductant of groundwater-dissolved U(VI), leading to precipitation of less soluble U(IV) and thereby forming As(V).  相似文献   

11.
The interaction mechanism between Eu(III) and graphene oxide nanosheets (GONS) was investigated by batch and extended X-ray absorption fine structure (EXAFS) spectroscopy and by modeling techniques. The effects of pH, ionic strength, and temperature on Eu(III) adsorption on GONS were evaluated. The results indicated that ionic strength had no effect on Eu(III) adsorption on GONS. The maximum adsorption capacity of Eu(III) on GONS at pH 6.0 and T = 298 K was calculated to be 175.44 mg·g(-1), much higher than any currently reported. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Eu(III) adsorption on GONS was an endothermic and spontaneous process. Results of EXAFS spectral analysis indicated that Eu(III) was bound to ~6-7 O atoms at a bond distance of ~2.44 ? in the first coordination shell. The value of Eu-C bond distance confirmed the formation of inner-sphere surface complexes on GONS. Surface complexation modeling gave an excellent fit with the predominant mononuclear monodentate >SOEu(2+) and binuclear bidentate (>SO)(2)Eu(2)(OH)(2)(2+) complexes. This paper highlights the application of GONS as a suitable material for the preconcentration and removal of trivalent lanthanides and actinides from aqueous solutions in environmental pollution management.  相似文献   

12.
X-ray absorption near-edge structure (XANES) at sulfur K-edge was used to determine the sulfate species present in size-fractionated aerosol particles based on the postedge structure after the main absorption peak in the XANES region. A comparison of the XANES spectra of reference sulfate materials and aerosol samples collected in Tsukuba in Japan clearly showed that (NH4)2SO4 was the main sulfur species in particles with a smaller diameter and CaSO4 x 2H2O (gypsum) was the main sulfur species in particles with a larger diameter. A simulation of the XANES spectra by reference materials allows us to obtain the quantitative mixing ratios of the different sulfate species present in the aerosol samples. The presence of minor sulfur species other than (NH4)2SO4 and gypsum at the surface of mineral aerosols is suggested in our simulations and by a surface-sensitive conversion electron/He-ion yield XANES. In the absence of a contribution from a large dust event, the mole concentration of gypsum in the mineral aerosol fraction (particle diameter > 1 microm) determined by XANES is similar to that of Ca which is determined independently using ion chromatography. This shows that the Ca and sulfate in the mineral aerosols are present only as gypsum. Considering that calcite is the main Ca mineral in the original material arising from an arid and semiarid area in China, it is strongly suggested that gypsum is formed in aerosol during its long-range transportation by a reaction between calcite and sulfate ions.  相似文献   

13.
Groundwater samples collected in a shallow oxic and reduced deep groundwater system revealed the influence of dissolved sulfide on the chemical and isotopic composition of fulvic acid associated sulfur. Stable isotope compositions of groundwater sulfate and fulvic acid sulfur and sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy data were used to determine the sources and processes affecting fulvic acid sulfur in the aquifer. A delta34S value of 2.2 per thousand for the shallow groundwater sulfate and a delta34S value of fulvic acids of 4.9 per thousand accompanied by a contribution of up to 49% of the most oxidized sulfur species (S+6) documented that fulvic acid sulfur is mainly derived from soil S compounds such as ester sulfates, with delta34S values similar to those of atmospheric sulfate deposition. In contrast, in the deep groundwater system with elevated delta34S values in groundwater sulfate of up to 20per thousand due to bacterial sulfate reduction, delta34S values in fulvic acid sulfur were negative and were up to 22per thousand lower compared to those of groundwater sulfate. Furthermore, reduced sulfur compounds constituted a significantly higher proportion of total fulvic acid sulfur in the deep groundwater compared to fulvic acids in shallow groundwater, supporting the hypothesis that fulvic acids act as a sink for dissolved hydrogen sulfide in the deep aquifer. Our results suggest that the combination of sulfur K edge XANES spectroscopy and stable isotope analysis on fulvic acids represents a powerful tool to elucidate the role of fulvic acids in the sulfur cycle in groundwater.  相似文献   

14.
A new method for the determination of the concentration and conditional stability constant of dissolved organic matter that binds mercury (Hg) has been developed using an in vitro assay of reducible Hg. The technique is a wet chemical analogue to electrochemical approaches now in use for ligand studies of many other trace transition metals in natural waters. Ligand characteristics are obtained from additions of ionic Hg to buffered lake, river water, and seawater and determination of the wet chemically reducible fraction following equilibration of the spike. This approach is robust, as demonstrated by (i) analysis using three reducing agents of varying strengths, (ii) replicate analyses, (iii) comparison to well-characterized complexing species (chloride and EDTA) using a competitive ion-exchange resin, and (iv) kinetic studies. Results indicate that Hg-complexing equivalents are present in the dissolved phase (<0.2 microm) ranging from <1 to >60 nN concentrations and with log conditional stability constants (log K') in the range of 21-24. Only one ligand class was found in the natural waters analyzed. There was indirect evidence for a class of organic ligands that formed reducible complexes with Hg in freshwater. Such ligand characteristics indicate that the vast majority of ionic inorganic Hg dissolved in freshwater and coastal saltwaters is associated with organic complexes. Concentrations, affinities, and kinetics implicate multidentate chelation sites as the principal complexing moieties for Hg and discourage the use of humic carboxylic acids as a proxy for the ligands/functional groups.  相似文献   

15.
Even if it is generally accepted that associations with natural organic matter (NOM) to a great extent determine the bioavailability and mobility of trace metals in soils and waters, the knowledge about the identity of NOM functional groups involved is still limited. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry of zinc (Zn) in two organic soils (500-10,000 microg Zn g(-), pH 5.6-7.3). In both soils Zn was coordinated by a mixture of oxygen/nitrogen (O/N) and sulfur (S) ligands in the first coordination shell. In average, 0.4-0.9 S atoms were located at a distance of 2.29-2.33 angstom, well in agreement with a 4-fold coordination with thiolates (RS-) in proteins. In addition 2.7-3.7 O/N atoms were located at 1.99-2.04 angstrom. The improved merit of fit by inclusion of S atoms was shown to be significant after adjusting for the improvement caused merely by increasing the number of fitting parameters. Two second shell Zn-C distances were used in our model: 3.0-4.2 carbon (C) atoms, associated to first shell O/N, were encountered at an average distance of 2.84 amgstrom, and 0.4-0.9 C atoms, associated to first shell S, were encountered at an average distance of 3.32 angstrom. These Zn-C distances are well in agreement with distances determined in well-defined organic molecules. It is concluded that Zn forms mainly inner-sphere complexes with a mixture of 4-fold coordination with S and O/N ligands and 6-fold coordination with O ligands in organic soils.  相似文献   

16.
目的评定原子吸收分光光度计法(atomic absorption spectroscopy,AAS)测定圆白菜中的镉含量的不确定度。方法依据JJF 1059.1-2012《测量不确定度评定与表示》,分析整个检测过程中所产生的不确定度来源,计算合成不确定度。结果计算得出圆白菜中镉的含量为0.036 mg/kg,扩展不确定度为0.0046 mg/kg(包含因子k=2)。结论可通过控制标准曲线校准过程和加强对仪器的维护保养等措施来减小原子吸收分光光度法测定圆白菜中镉含量的不确定度,保证实验数据的可靠性,为检测报告提供有力依据。  相似文献   

17.
目的 建立石墨炉原子吸收光谱法测定泰虾中镉的不确定度评定方法。方法 样品经微波消解后稀释,将一定量的样品消解液注入原子吸收分光光度计的石墨炉原子化器中。采用标准曲线法定量。分析了测定过程中的不确定度来源,对不确定度的组成进行了评定和量化。根据数学模型计算了样品中镉的含量,合成了标准不确定度和扩展不确定度。结果 石墨炉原子吸收光谱法测定泰虾中镉含量为1.6 mg/kg,扩展不确定度为0.2 mg/kg(k = 2),结果表达为 (1.6 ± 0.2) mg/kg,k = 2。结论 结果表明,不确定度的主要来源是样品溶液中镉浓度的测定,其次是重复测定和加标回收试验,其他因素引起的不确定度可以忽略。  相似文献   

18.
Experiments with immobilized lead dioxide showed that this solid was reduced by natural organic matter (NOM) isolated from Potomac River water. Kinetically, the process was slow and occurred throughout many weeks of exposure. The amount of mobilized lead was affected by the concentration of NOM and exposure time but not significantly influenced by the type of NOM used in the experiments. The interactions of NOM with PbO2 were quantified using differential absorbance spectroscopy. It showed that the oxidation of chromophoric groups in NOM was strongly correlated with lead release. Because lead release yields were higher thatthose predicted based on the depletion of the aromatic groups, it is hypothesized that NOM moieties otherthan aromatic functionalities are engaged in the reduction of PbO2 by NOM and/or lead mobilization involves the formation of mixed Pb(II)/Pb(IV) soluble and colloidal species.  相似文献   

19.
Spectroscopic extended X-ray absorption fine structure (EXAFS) evidence was obtained on the chemical environment of 99Tc(IV) atoms formed upon introduction of TcO4- into four types of laboratory-scale synthetic and natural systems which mimic in situ natural reducing conditions in humic-rich geochemical environments: (a) magnetite/pyrite in synthetic groundwater in the absence of humic substances (HSs), (b) magnetite/pyrite in natural Gorleben groundwater in the presence of HSs, (c) Boom clay sediment mixed with synthetic groundwater, and (d) Gorleben sand mixed with natural Gorleben groundwater. The investigated systems obey to pH 8-9 conditions, and all measured samples show similar EXAFS spectra for Tc, which could be fitted by a hydrated TcO2 x xH2O phase. The results are interpreted as follows: upon introduction of high concentrations (millimolar to micromolar) of TcO4-to chemically reducing environments, small Tc(IV) oxidic polymers are formed, which either may aggregate into larger units (colloids) and finally precipitate or may interact in their polymeric form with (dissolved and immobile) humic substances. This latter type of interaction--Tc(IV) colloid sorption onto HSs--differs significantly from the generally accepted metal--humate complexation and therefore offers new views on the possible reaction pathways of metals and radionuclides in humic-rich environments.  相似文献   

20.
Hematite (10 mg of Fe/L) floc-humic acid assemblages have been formed at pH 4 either by first aggregating hematite particles with salt (100 mM KCl) and then adding humic acid (salt-particle-organic or SPO assemblages) or by suspending the hematite particles in humic acid solutions and then adding salt to induce aggregation (organic-particle-salt or OPS assemblages). The behavior of these assemblages upon deposition on microfiltration (MF) membranes has then been investigated. In the OPS case, the fractal dimension (dF) of the assemblages formed varied dramatically depending upon the extent of charge neutralization by added fulvic acid with dF values typical of diffusion-limited cluster aggregates at low (0.1-0.2 mg/L) humic acid concentrations and dF values typical of reaction-limited cluster aggregates either in the absence of humic acid or concentrations greater than 0.4-0.6 mg/L. In the SPO case, dF values on the order of 2.1 were initially observed and were found to decrease to around 1.8-1.9 for humic acid concentrations greater than 0.6-0.8 mg/L. OPS assemblages with low fractal dimensions were found to be highly compressible once deposited on MF membranes with significantly higher specific cake resistances than was the case for SPO assemblages at transmembrane pressures of 50 kPa and above. These results highlight the importance of both the choice of coagulant (e.g., preformed vs formed in situ) and the transmembrane pressure to which a membrane filtration process might be allowed to rise prior to removal of the fouling layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号