首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
微小振动影响超精密非球面加工精度的研究   总被引:4,自引:0,他引:4  
超精密磨削已广泛应用于轴对称非球面光学元件及硬脆材料的加工,加工过程中砂轮的不平衡量和机床主轴引起的振动直接影响工件表面精度及粗糙度。为了适应非球面工件超精密加工的要求,本文通过分析加工过程中产生的振动现象,建立磨削中振动引起工件表面轮廓误差的数学模型,研究主轴转速变化及磨削加工参数对工件表面精度的影响;通过建立工件与砂轮之间的运动关系,得出砂轮的振幅、频率及加工速度的变化对工件表面精度的影响条件。研究结果表明:选择合理的加工参数能降低工件表面波纹度,提高工件的表面精度。  相似文献   

2.
超精密磨削加工微小振动模拟系统研究   总被引:2,自引:0,他引:2  
文章分析了加工过程中产生的振动现象以及砂轮振动对工件表面精度的影响,设计了超精密磨削加工砂轮微振动的模拟系统.该系统可模拟实际磨削过程中砂轮径向、横向的微小振动和摆动,为研究不同的磨削加工参数下砂轮的振动及其对工件表面精度的影响奠定了实验基础.  相似文献   

3.
本文对纳米复相陶瓷材料进行了不同参数下的普通磨削和二维超声振动磨削的对比试验,研究了超声振动磨削对工件表面质量的影响,分析了不同的加工工艺参数及振动参数对加工工件表面粗糙度的影响,实验结果表明,在同样的切深条件下,超声振动磨削表面的沟槽浅而宽,可以得到比普通磨削加工粗糙度较小的加工表面,且在超声振动中砂轮作高频振动,砂轮不易堵塞,利于使用细粒度砂轮磨削;工件速度对二维超声振动磨削表面粗糙度影响很大,其值随着工件速度的增加而增大。二维超声振动磨削可以提高陶瓷材料的表面质量,并能有效地避免普通磨削下微裂纹的产生,因此它是磨削陶瓷的一种精密加工方法。  相似文献   

4.
目的 关联主轴系统动静态特征,研究端面磨削表面创成机理.方法 以粉末冶金不锈钢316L为研究对象,首先构建关联主轴系统动静态特征的有限元模型,分析主轴系统动静态特征对砂轮端面各位置位移大小的影响.然后基于端面砂轮表面磨粒的位置和尺寸信息,建立端面砂轮磨粒三维空间轨迹方程,推导相邻磨粒运动关系式,采用轮廓搜索法确定端面磨削表面的动静态创成过程.最后,结合端面磨削加工实验,分析端面磨削系统动态、静态特征对加工表面粗糙度与轮廓度的影响规律,阐释加工表面材料去除不均匀的本质,并提出创成表面质量的参数化修正方法.结果 靠近砂轮边缘的磨粒静态退让量大于靠近砂轮中心部分的磨粒静态退让量,但不同位置的磨粒动态振动量差异不大.静态退让量随切深的增加而增大,动态振动量随砂轮转速的增加而增大.结论 砂轮表面磨粒的静态退让性是造成加工表面轮廓度误差的重要因素,同时主轴系统动态振动特征会影响加工表面粗糙度.分析可得,砂轮转速在400 r/min左右,与之匹配无理数转速比的工件转速和较小的法向切深,可提高端面磨削表面质量表征.  相似文献   

5.
目的基于应力刚化效应,通过施加预应力来调节颤振强度,进而研究预应力条件下系统颤振对磨削工件表面形貌的影响规律。方法选用45钢作为研究对象,首先建立两自由度磨削系统动力学模型,采用时域与频域相结合的方式来获得磨削系统的动力学特性。然后运用Johnson变换获得砂轮表面磨粒的非高斯分布,基于磨粒的运动轨迹和磨削系统的动态特性,建立多因素耦合型工件表面形貌的数学模型,进而获得考虑颤振因素的工件表面几何形貌。结果预应力条件下,磨削工件表面轮廓高度在1.1~1.7μm范围内波动,工件表面的平均轮廓高度沿着砂轮的进给方向呈增大趋势。考虑颤振因素的轮廓高度计算结果更接近测得的工件表面平均轮廓高度,随着砂轮转速的增大和进给速度的减小,工件表面的平均轮廓度降低。结论通过对比实验与仿真条件下工件表面轮廓的高度值,发现预应力条件下系统颤振导致工件表面轮廓高度分布呈现一定的不均匀性,工件表面平均轮廓高度沿着砂轮进给方向逐渐增加。同时,颤振很大程度上降低了加工工件表面微观几何精度。在实际生产中,可采用提高砂轮转速与降低砂轮进给速度的方式来减小颤振对预应力磨削工件微观表面轮廓高度的影响。  相似文献   

6.
本文提出新型组装砂轮结构,实验研究了该砂轮在磨削不锈钢工件时的表面加工质量、磨削力和振动等。  相似文献   

7.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

8.
田迪 《磨料磨具通讯》2010,(8):10-10,35
在许多磨削应用领域,磨削速度取决于温度效应,例如:表面烧伤、残余应力、微裂纹等。热损伤是常见的影响生产力因素之一,由于价格优势,在加工过程中大量使用普通砂轮。与普通砂轮相比,cBN砂轮具有良好的热传导性能,它的磨削速度更快,消除了影响生产力的顾虑。本文研究了使用普通砂轮和cBN砂轮加工型号为52100钢时表面的最高温度。此实验在干磨和湿磨的条件下进行。  相似文献   

9.
针对偏心轴在磨削过程中存在冲击和振动而影响加工表面精度和质量的问题,文章分析了偏心轴磨削系统产生的几种振动,通过CATIA三维软件建立了磨削简化模型,同时通过接口互换导入ADAMS进行运动仿真,分析研究了偏心轴磨削过程中换向冲击产生的自由振动导致的加速度曲线变化、砂轮架质量、砂轮架水平进给速度等因素对振动的影响,又分析了工件偏心、砂轮偏心引起的振动,可以为进一步提高表面质量和磨削稳定性的研究提供理论支撑。  相似文献   

10.
文章通过对数控磨削球面的表面粗糙度的形成机理分析,建立了磨粒轨迹坐标系的数学模型并进行计算;然后利用Matlab软件对数控磨削球面的加工轨迹进行了仿真,且对砂轮的形貌,如相邻磨粒的间距以及磨粒高度的随机分布建立了公式,进而编制M文件计算不同参数变化时表面粗糙度的取值,采用列表的方式对影响磨削球面表面粗糙度的各个影响因素综合比较,得出合理选择数控磨削球面时加工方式及砂轮的粒度和浓度、砂轮转速及砂轮直径、工件转速及工件直径、工件的加工部位等各项因素的综合方法。  相似文献   

11.
为探究CFRP砂轮与钢基体砂轮在高速磨削过程中的动力学特性,在数控凸轮轴磨床上搭建振动测试试验平台,开展磨削过程的动力学特性试验,研究2种砂轮在不同线速度和不同进给速度下的振动信号变化,并测量磨削后工件的表面粗糙度。结果表明:CFRP砂轮主轴系统的各阶固有频率高于钢基体砂轮主轴系统的各阶固有频率,且磨削过程中激发的优势频率处于高频区域。随着砂轮线速度的增大,GCr15工件表面粗糙度随之发生波动,CFRP基体砂轮磨削表面的粗糙度明显变小,较钢基体砂轮磨削表面的粗糙度减小30%~35%。颤振发生前后,CFRP基体砂轮磨削的表面粗糙度由0.089 μm变为0.091 μm,粗糙度增大2.2%;钢基体砂轮磨削的表面粗糙度由0.135 μm变为0.146 μm,粗糙度增大8.2%。在线速度一定的条件下,随着砂轮进给速度的增加,CFRP砂轮和钢基体砂轮磨削的工件表面粗糙度值都有增加,分别为2.4%和2.9%,但相较于砂轮线速度对工件表面粗糙度值的影响,进给速度对工件表面粗糙度值的影响更小。   相似文献   

12.
金刚石砂轮成形磨削加工技术是硬脆材料表面微结构加工的一种有效方法。应用V形砂轮在硬质合金YT15和Al2O3陶瓷两种材料表面进行V形微结构的磨削试验,通过磨削试验研究V形微结构的成形磨削效果、磨削参数对V形槽的表面质量及磨削过程中的磨削力和比磨削能的影响。试验结果表明应用V形砂轮可以较好地实现硬脆材料表面V形槽结构的磨削,在可加工性好的材料上V形槽磨削所需的磨削力和比磨削能相对较大。磨削参数的变化影响V形槽表面质量及磨削过程中的磨削力和比磨削能,其中比磨削能可以反应磨削过程中的材料去除方式。YT15表面的试验结果表明V形砂轮的磨损对加工出的V形槽的轮廓结构有相当大的影响。  相似文献   

13.
基于数控成形磨齿机加工齿轮的几何原理和机床运动学原理,建立磨削力简化模型,经磨削力经验公式计算得出砂轮进给速度与磨削力关系,分析磨削力在不同砂轮进给速度下的变化趋势。通过搭建振动测试平台,采集振动信号,对振动信号进行快速傅里叶变换,分析不同砂轮进给速度下振动信号的变化,进而得出砂轮进给速度、磨削力和振动特性之间的关系,为提高齿面磨削质量提供了参考依据。  相似文献   

14.
超声振动螺线磨削过程中,砂轮表面微观形貌的变化复杂.为准确表征其特征,采用功率谱密度分析方法,将砂轮表面的微观结构分解为不同频率、振幅和相位的谐波,对比分析不同磨削行程时普通磨削和超声振动螺线磨削砂轮表面的磨损行为.结果表明:砂轮表面功率谱密度曲线的斜率k随着磨削行程的增大而逐渐减小,即k越小砂轮表面磨损越严重.其中,...  相似文献   

15.
针对聚晶金刚石(PCD)刀具的研磨质量问题,选择刃口钝圆半径、刃口缺陷度、后刀面粗糙度作为评价指标进行工艺参数的优化试验,并分析PCD的研磨去除机理。结果表明:工作台调定压力对刃口钝圆半径影响最显著;金刚石砂轮对刃口缺陷度影响最显著;砂轮转速对后刀面粗糙度影响最显著。选择4/5陶瓷基金刚石砂轮、1 000 r/min砂轮转速、170 N工作台调定压力可以获得研磨质量较高的PCD刀具。试验条件下,PCD的主要去除方式为划擦作用与微细破碎。1 000 r/min砂轮转速、170 N工作台调定压力下的微细破碎在保证较小刃口钝圆半径与刃口缺陷度的同时,可以获得相对平整的PCD表面。   相似文献   

16.
当砂轮磨钝时,磨削力、力比、磨削振动振幅、磨削噪声声压、磨削表面粗糙度以及工件不圆度均会发生急剧变化,因此可把它发生急变以前的某一时间作为砂轮的耐用度。本文根据所建立的砂轮耐用度判定标准,研究了外圆磨削300M超高强度钢时磨削参数对砂轮耐用度的影响。  相似文献   

17.
用小直径砂轮超声振动磨削和普通磨削加工SiC陶瓷零件,对比研究砂轮线速度、工件进给速度、磨削深度和超声振幅对其磨削表面质量的影响。结果表明:与普通磨削相比,超声振动磨削的磨粒轨迹相互交叉叠加,工件表面形貌更均匀,表面质量更好。由于超声振动时的磨粒划痕交叉会使磨粒产生空切削,因而降低了其磨削力,使磨削过程更加稳定。超声振动磨削的表面粗糙度和磨削力随砂轮线速度和超声振幅的增加而降低,随工件进给速度和磨削深度的减小而降低。且砂轮线速度、工件进给速度较小时,超声振动磨削的效果更明显。   相似文献   

18.
为探究砂轮表面磨粒形态对磨削振动的影响规律,提高磨削加工质量,构建了磨削振动模型并推导磨粒形态-接触刚性-磨削振动的对应关系,开展修整-磨削试验,通过试验分析并验证不同磨粒形态对磨削振动信号RMS和工件表面波纹特征Wa影响的差异。结果表明:在不影响砂轮锋利性的前提下,表征磨粒出露高度的砂轮AH值减小约58%,则RMS值和Wa值分别减小约47%和57%;在相同磨粒出露高度条件下,磨粒钝化的比例约20%,则RMS和Wa分别减小约22%和30%;同时,适度减小磨粒出露高度,磨粒适度钝化,有助于增大磨粒与工件接触面积,改善磨削振动,提高磨削加工质量。且提出的磨削振动模型与试验结果相符。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号