首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The causal role of Epstein-Barr virus (EBV) in the development of B-cell lymphoma, especially in immunocompromised individuals, has been suggested. The purpose of the present study was to evaluate an association of EBV with thyroid lymphoma (TL) and chronic lymphocytic thyroiditis (CLTH) which is known to play an important role in the development of TL. Thirty cases with TL and 28 with CLTH were studied for presence or absence of EBV genome in the lesions using the polymerase chain reaction (PCR) and the in situ hybridization method. EBV genomes were detected by PCR in one and two cases with CLTH and TL, respectively. Subtyping of EBV genome was possible in one TL case showing B-type in EBNA-2 coding region. In situ hybridization revealed positive signals in the nucleus of lymphoma cells, which also expressed latent membrane protein-1. The present findings indicate that activation of EBV in TL is not common.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line, which suggests that EBV and HIV-1 infection of non-B cells may result in HIV-1 promoter activation. Therefore, a specific gene product of EBV, EBNA2, can transactivate HIV-1 and possibly contribute to the clinical progression of AIDS.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Epstein-Barr viral nuclear antigen-1 (EBNA-1) is required for the stable replication of plasmids that contain oriP, the origin of DNA synthesis used during the latent phase of the Epstein-Barr virus life cycle. EBNA-1 acts post-synthetically through unknown mechanisms to facilitate the continued synthesis of oriP plasmids in ensuing S phases. In contrast to viral replicons such as that of SV40, DNA synthesis of oriP is restricted to a single round during each cell cycle. Large T-antigen of SV40 is a DNA helicase and activates the synthesis of SV40 DNA by recruiting cellular proteins required for DNA synthesis to the origin of SV40. Using fusion proteins of EBNA-1 and large T-antigen, we tested whether tethering large T-antigen to oriP is sufficient to initiate multiple rounds of DNA synthesis from oriP during each cell cycle. We report here that, although these fusion proteins retain the biological activities of both EBNA-1 and large T-antigen, their constituent proteins do not confer the properties of one on the other. Thus, it is not possible to subvert the cellular controls that restrict DNA synthesis from oriP to a single round per cell cycle. These results also provide insights into architectural constraints at oriP and at the SV40 ori.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号