首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Pb(In(1∕2)Nb(1∕2))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) (PIN-PMN-PT) crystals were studied as function of phase and orientation. The properties, including the Curie temperature T(C), ferroelectric-ferroelectric phase transition temperature T(R∕O-T), coercive field, and piezoelectric∕dielectric responses, were systematically investigated with respect to the composition of PIN-PMN-PT crystals. The Curie temperature T(C) was found to increase from 160 to 220 °C with ferroelectric-ferroelectric phase transition temperature T(R-T) and T(O-T) being in the range of 120-105 °C and105-50 °C, respectively. The piezoelectric activity of PIN-PMN-PT crystals was analyzed by Rayleigh approach. The ultrahigh piezoelectric response for domain engineered [001] (1600-2200 pC∕N) and [011] (830-1550 pC∕N) crystals was believed to be mainly from the intrinsic contribution, whereas the enhanced level of piezoelectric and dielectric losses at the compositions around morphotropic phase boundaries (MPBs) was attributed to the phase boundaries motion.  相似文献   

2.
The piezoelectric properties of Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) crystals with various engineered domain configurations were investigated. Rhombohedral and monoclinic∕orthorhombic crystals poled along their crystallographic [011] directions were found to possess macroscopic mm2 symmetry, with "2R" and "1O" domain, respectively. Crystals with the "2R" domain configuration were found to exhibit high extensional piezoelectric coefficients d(33) (~1300 pC∕N) and d(32) (~-1680 pC∕N), while crystals with the "1O" configuration possessed high shear coefficients d(15) (~3500 pC∕N) and d(24) (~2070 pC∕N), with relatively low extensional piezoelectric coefficients d(33) (~340 pC∕N) and d(32) (~-260 pC∕N). The observed results were explained by "polarization rotation" model, as related to their respective domain configurations.  相似文献   

3.
Liu G  Jiang W  Zhu J  Cao W 《Applied physics letters》2011,99(16):162901-1629013
Complete sets of elastic, piezoelectric, and dielectric constants of 0.72Pb(Mg(1∕3)Nb(2∕3))O(3)-0.28PbTiO(3) single crystal poled along [111](c) (single domain) as well as non-polar axes [001](c) and [011](c) (multidomain) have been measured under natural conditions. These data allowed us to evaluate accurately the extrinsic contributions to the superior piezoelectric properties. Very large extrinsic contributions to the unusual anisotropies in multidomain crystals are confirmed. We found that the instability of domain structures is the origin of the low mechanical quality factor Q for the multidomain relaxor-based ferroelectric single crystals. Our results can provide useful guidance in future design of domain engineered materials.  相似文献   

4.
云斯宁  王晓莉  李亚兵 《功能材料》2006,37(3):483-486,491
采用固相反应的方法系统地研究了BZN稳定PZN基陶瓷的相结构与介电性能.随着BZN含量的增加,PZN-BZN陶瓷中钙钛矿相的稳定性增强,居里温度近似呈线性下降,室温介电常数和介质损耗随也显著降低,最小值分别为380和0.002.为获得100%钙钛矿结构的PZN基陶瓷所需BZN的最小用量为8mol%~10mol%,当BZN的mol%超过15mol%时,PZN基陶瓷中钙钛矿相所占的百分比不再受烧结工艺的影响,基本保持100%.1kHz时Pb0.9Ba0.1Zn1/3Nb2/3O3陶瓷的最大介电常数Kmax=8680,tgδ=0.02,相应的居里温度Tm为24℃.  相似文献   

5.
6.
Low-temperature sintering of (a–x)Pb(Zr0.48Ti0.52)O3–bPb(Ni1/3Nb2/3) O3–cPb(Zn1/3Nb2/3)O3–xPb(Fe2/3W1/3)O3 (a + b + c + x = 1, 0.06 ≤ x ≤ 0.10) ceramics were prepared through two-step synthesis process using perovskites-structured ferroelectric materials Pb(Fe2/3W1/3)O3 (PFW) as a sintering aid. The effects of PFW content on the densification, microstructure, phase structure, dielectric and piezoelectric properties of the ceramics were investigated. The sintering temperature was reduced from 1,180 °C (without PFW addition) to 940 °C when the material was PFW-doped. PFW-doping increased the sintered density and the average grain size of PFW–PNN–PZN–lead zirconate titanate ceramics. The ceramics sintered at 940 °C for 4 h with x = 0.08 exhibited favorable properties, which were listed as follows: d33 = 496pC/N, εT 33/ε0 = 3,119, tanδ = 2.1 % and Curie temperature = 242 °C. These values indicated that the newly developed composition might be suitable for multilayer piezoelectric devices application.  相似文献   

7.
8.
In this study, 0.2875 Pb(Mg1/3Nb2/3)O3–0.2875 Pb(Yb1/2Nb1/2)O3–0.425 PbTiO3 (0.2875PMN–0.2875PYbN–0.425PT) ternary ceramic composition was doped with 1 mol% MnCO3 in order to induce hard character for potential high-power applications. Dense 0.2875PMN–0.2875PYbN–0.425PT ceramics with 1 mol% MnCO3 addition were fabricated after sintering at 1100 °C. ε r = 1728, tanδ = 0.35 %, d 33 = 320 pC/N, d 31 = ?103 pC/N, Q m = 467, k p = 0.40, k 31 = 0.24, k 33 = 0.49, and T c = 280 °C were measured for Mn-doped ceramics. However, undoped ceramics had ε r = 2380, tanδ = 1.95 %, d 33 = 433 pC/N, d 31 = ?145 pC/N, Q m = 60, k p = 0.43, k 31 = 0.27, k 33 = 0.48, and T c = 285 °C. Acceptor Mn2+/Mn3+ ions presumably substituted B-site ions in the perovskite structure and formed defect dipole pairs. The electrically “hard” character was induced as a result of the domain wall pinning due to the existing defect pairs. Particularly, increasing Q m from 60 to 467 and decreasing tanδ from 1.95 to 0.35 % after Mn doping showed that Mn-doped 0.2875PMN–0.2875PYbN–0.425PT ceramics with “hard” character are potential candidates for high-power projector and transducer applications.  相似文献   

9.
Zhou  Hongqiao  Yang  Shengyu  Xi  Zengzhe  Dong  Shasha  Guo  Feifei  Long  Wei  Li  Xiaojuan  Fang  Pinyang  Dai  Zhonghua 《Journal of Materials Science》2021,56(21):12121-12131
Journal of Materials Science - The crystal structure, electric properties, thermal stability and optical properties of Sm-doped 0.15Pb(Sc1/2Nb1/2)O3–0.50Pb(Mg1/3Nb2/3)O3–0.35PbTiO3...  相似文献   

10.
Lead-free (1 ? x)Ba(Y1/2Nb1/2)O3xBaTiO3; (0 ≤ x ≤ 1) ceramics have been synthesized using solid-state reaction method and characterized by X-ray diffraction, scanning electron microscopy, dielectric and impedance studies. The crystal-structure of the compounds is found to be cubic with the space group Pm3m(221) except for BaTiO3 for which it is tetragonal (P4/mmm). Complex impedance spectroscopy analysis indicated the presence of non-Debye type dielectric relaxation in Ba(Y1/2Nb1/2)O3–BaTiO3 system. Compound 0.25Ba(Y1/2Nb1/2)O3–0.75BaTiO3 exhibited a low value of temperature coefficient of capacitance (<±8 %) in the working temperature range (up to +100 °C), room temperature dielectric constant equal to 295 and low loss tangent (0.039) which meets the specifications for “Z5F” of Class I dielectrics of Electronic Industries Association. Hence, this composition might be a suitable candidate for capacitor applications. Ac conductivity and electric modulus studies supported the hopping type of conduction in the system and frequency dependent ac conductivity data obeyed Jonscher’s power law.  相似文献   

11.
Pb(Fe1/2Nb1/2)O3–Pb(Fe2/3W1/3)O3solid solutions were characterized by dielectric measurements at low frequencies and in the microwave range and magnetic measurements at high frequencies. The observed microwave dispersion was tentatively attributed to the domain mechanism of polarization. The obtained results suggest that the solid solutions studied are potential microwave-absorbing materials.  相似文献   

12.
(1 ? x) Ca(Zn1/3Nb2/3) OxBa(Zn1/3Nb2/3)O3 (short for CZN/BZN, x = 0–1.0) ceramics were prepared and investigated through the “one-step synthesis method” method. The structure of the system was analyzed using X-ray diffraction. The microstructure of the sintered pellet was analyzed using scanning electron microscopy. Dielectric constant (εr), temperature coefficient of resonant frequency (τf) and the unloaded quality factor (Q × f) were measured in the microwave frequency region. Two dielectric properties were firstly in the rising tendency and then decreasing with the increased x. On the other hand, a good combination of microwave dielectric properties (εr = 24, Q × f = 23,510 GHz τf = ?9 ppm/°C) were obtained at x = 0.1. The compositions have excellent microwave dielectric properties and hence are suitable for ceramic capacitors or dielectric resonators applications.  相似文献   

13.
14.
Data are presented on the phase composition, crystal structure, microstructure, and dielectric and piezoelectric properties of (1 – y)[(1 – x)Pb(Mg1/3Nb2/3)O3xPbTiO3]–yPb(Mg1/2W1/2)O3 (x = 0.30–0.36; y = 0, 0.05, 0.10) ceramics. It is shown that the use of fine-particle magnesia as a starting reagent ensures the formation of single-phase materials. The ceramics with a rhombohedral structure are found to exhibit relaxor behavior. Increasing the content of the Pb(Mg1/2W1/2)O3 perovskite leads to ordering of the domain structure of poled ceramics and increases their piezoelectric charge coefficient d 31 and the width of their phase transitions.  相似文献   

15.
We report on the successful preparation and characterization of fluorescent magnetic core∕shell Fe(3)O(4)∕ZnSe nanoparticles (NPs) with a spherical shape by organometallic synthesis. The 7 nm core∕3 nm shell NPs show good magnetic and photoluminescence (PL) responses. The observed PL emission∕excitation spectra are shifted to shorter wavelengths, compared to a reference ZnSe NP sample. A dramatic reduction of PL quantum yield is also observed. The temperature dependence of the magnetization for the core∕shell NPs shows the characteristic features of two coexisting and interacting magnetic (Fe(3)O(4)) and nonmagnetic (ZnSe) phases. Compared to a reference Fe(3)O(4) NP sample, the room-temperature Néel relaxation time in core∕shell NPs is three times longer.  相似文献   

16.
以无机盐Nb2O5、Mg(NO3)2、Pb(NO3)4、Co(NO3)2、Fe2(NO3)3为原料,柠檬酸和EDTA为络合剂,分别制备了Nb5+、Mg2+、Pb2+、Co2+、Fe3+等离子的络合溶液。采用络合法制备了铌酸镁-铁酸钴先驱体(MgNb2O6-CoFe2O4,简称MN-CFO)。此先驱体在1000℃煅烧1h后,得到纯净的MgNb2O6-CoFe2O4固溶体。采用液相包裹法制备了铌镁酸铅-铁酸钴(Pb(Mg1/3Nb2/3)O3-CoFe2O4)先驱体,在1000℃煅烧1h,Pb(Mg1/3Nb2/3)O3-CoFe2O4先驱体分解为具有铁电相Pb(Mg1/3Nb2/3)O3和铁磁相CoFe2O4的复相组织。研究了10%过量的PbO对煅烧过程中烧绿石相向铁电相的转变作用,并在700℃煅烧5h条件下制备了不含烧绿石相的Pb(Mg1/3Nb2/3)O3-CoFe2O4固溶体。  相似文献   

17.
18.
铅基复合钙钛矿铁电材料广泛应用于机电传感器、致动器和换能器。二元铁电固溶体Pb(Ni1/3Nb2/3)O3- PbTiO3(PNN-PT)由于其在准同型相界(MPB)区域具有优异的压电、介电性能而备受关注。然而较大的介电损耗和较低的居里温度限制了其在高温高功率器件方面的应用。本研究通过引入Pb(In1/2Nb1/2)O3 (PIN)作为第三组元改善PNN-PT的电学性能, 提高其居里温度; 通过两步法合成了MPB区域的三元铁电陶瓷Pb(In1/2Nb1/2)O3- Pb(Ni1/3Nb2/3)O3-PbTiO3 (PIN-PNN-PT), 研究了其结构、介电、铁电和压电性能。制备的所有组分陶瓷具有纯的钙钛矿结构。随着PT含量的增加, 陶瓷结构从三方相转变为四方相。通过XRD分析得到了室温下PIN-PNN-PT体系的MPB相图。体系的居里温度由于PIN的加入得到了很大的提高, 更重要的是PIN的引入降低了PNN-PT体系的介电损耗和电导。MPB处的组分展现出了优异的电学性能, 室温下, 性能最优组分为0.30PIN-0.33PNN-0.37PT: d33=417 pC/N, TC=200 ℃, ε′= 3206, tanδ=0.033, Pr=33.5 μC/cm2, EC=14.1 kV/cm。引入PNN-PT的PIN第三组元使得体系的居里温度和压电性得到提高的同时降低了的介电损耗和电导率, 因此, PIN-PNN-PT三元铁电陶瓷在高温高功率换能器等方面具备一定的应用潜力。  相似文献   

19.
Ferroelectric ceramics in the vicinity of morphotropic phase boundary (MPB) with compositions represented as (1 ? x)[(1 ? y)(Pb(Mg1/3Nb2/3)O3)–y(Pb(Yb1/2Nb1/2)O3)]–xPbTiO3 were prepared by solid state reaction. The addition of PYbN to PMN–PT decreased the sintering temperature from 1200 °C (y = 0.25) to 1000 °C (y = 0.75). The PT content, where the MPB was observed, increased with the PYbN addition. A remanent polarization value of 28.5 µC/cm2 and a coercive field value of 11 kV/cm were measured from 0.62[0.25PMN–0.75PYbN]–0.38PT ceramics, which were close to the ones measured from PMN–0.32PT ceramics. In addition, the Curie temperature was found to increase with PYbN additions.  相似文献   

20.
运用均匀设计方法制定PMN反应烧结的试验方案,并对所得样品的烧结收缩率和相对密度等试验数据进行回归处理,同时利用在其他反应烧结条件下所得样品的试验数据对回归方程进行验证,回归方程具有较高的置信度.在1050℃以后利用反应烧结可得到高纯度的PMN陶瓷;保温时间对烧结收缩率和相对密度的影响远小于烧结温度的影响;在反应烧结过程中,烧结收缩率和相对密度的变化大致可分为三个阶段:1050℃以前和1100℃以后两个阶段变化均很平缓,1050℃~1100℃之间变化则较为急剧.温度达1200℃时,经过足够的保温时间可实现99%以上的相对密度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号