首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Insulin production by the pancreatic islet is tightly coupled to the concentration of blood glucose. The mechanism by which glucose controls proinsulin biosynthesis in beta cells is poorly understood. Analysis of insulin gene expression in individual cells within whole, living islets using adenovirus gene transfer and direct observation of insulin promoter-directed green fluorescent protein activity indicates that beta cells are functionally heterogeneous. An increase in glucose concentration not only stimulates expression within individual beta cells, but unexpectedly acts to increase the total number of positive cells. The net islet response to a given glucose stimulus reflects an integrated action of beta cells with individually differing behaviors. This additional level of functional complexity may provide new insights into the pathophysiology and treatment of diabetes mellitus.  相似文献   

2.
3.
Recent experiments have suggested that tumor necrosis factor alpha (TNFalpha) can down-regulate islet-specific T cells and prevent the development of autoimmune diabetes. Here we demonstrate that transgenic mice expressing both TNFalpha and the Leishmania major LACK antigen in the pancreas (RIP-TNFalpha/RIP-LACK) exhibit an impaired ability to mount a CD4+ T cell response against LACK. In addition, peripheral CD4+ T cells from TCR transgenic mice (TCR-LACK/RIP-TNFalpha/RIP-LACK) produced reduced interleukin-2 but elevated levels of T helper 2 cytokines in response to LACK peptide in vitro. Taken together, our data suggest that TNFalpha may act in vivo to modulate a potentially damaging self-reactive T cell response by inducing tolerance to pancreatic antigens.  相似文献   

4.
Implementing change requires a thorough knowledge of change theory and change strategies. If change is handled correctly, initial resistors to change can eventually become ambassadors for the change. Most patients welcomed the introduction of bedside handover reports and increased job satisfaction was found among staff.  相似文献   

5.
6.
Bacterial invasion of mucosal surfaces results in a rapid influx of polymorphonuclear leukocytes. The chemotactic stimulus responsible for this response is not known. Since epithelial cells are among the first cells entered by many enteric pathogens, we investigated the ability of epithelial cells to provide an early signal for the mucosal inflammatory response through the release of chemotactic cytokines. As shown herein, the chemokine interleukin-8 (IL-8), a potent chemoattractant and activator of polymorphonuclear leukocytes, was secreted by intestinal and cervical epithelial cells in response to bacterial entry. Moreover, a variety of different bacteria, including those that remain inside phagosomal vacuoles, e.g., Salmonella spp., and those that enter the cytoplasm, e.g., Listeria monocytogenes, stimulated this response. Increased IL-8 mRNA levels could be detected within 90 min after infection. Neither bacterial lipopolysaccharide nor noninvasive bacteria, including Escherichia coli and Enterococcus faecium, induced an IL-8 response. Moreover, tumor necrosis factor alpha, which is known to be expressed by some epithelial cells, was not detected in the culture supernatants after bacterial entry, and addition of anti-tumor necrosis factor alpha antibodies had no effect on the IL-8 response following bacterial entry. These data suggest the novel concept that epithelial cells serve as an early signaling system to host immune and inflammatory cells in the underlying mucosa following bacterial entry.  相似文献   

7.
PURPOSE: Because retinal pigment epithelial cells in epiretinal membranes remodel and contract their surrounding extracellular matrix, investigations were performed to determine if these cells can produce matrix metalloproteinases and contract collagen gels in vitro in the presence of serum or cytokines. METHODS: Cells were grown on collagen gels and their production of metalloproteinases was measured using zymography. RESULTS: Cells grown in a three-dimensional collagen gel culture system produce several latent metalloproteinases that are secreted into the gel and the surrounding medium. These include molecules of 49, 56, 66, and 100 kD. In addition, an enzyme that is probably the active form of the 66 kD enzyme is present. When interleukin 1 beta is added to the cultures, latent 49 kD and 100 kD gelatinase production is greatly stimulated and an active form of both enzymes is also observed in the medium. In contrast, transforming growth factor beta has no stimulatory effect. The cells contract the collagen gel but this is small without cytokines; however, contraction is greatly enhanced in the presence of serum or interleukin 1 beta plus transforming growth factor beta. Contraction is unlikely to be the result of metalloproteinase action on the underlying extracellular matrix because complete inhibition of these enzymes has little effect. CONCLUSIONS: These results show that cytokines can cause cultured retinal pigment epithelial cells to produce metalloproteinases that can, when activated, degrade most collagens and other structural molecules in extracellular matrix. In addition, they can stimulate the contraction of extracellular matrix constituents but there is not a simple causal relationship between matrix remodeling and contraction.  相似文献   

8.
OBJECTIVE: To test the hypothesis that interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) regulate granulocyte colony-stimulating factor (G-CSF) production by human placental villous core mesenchymal cells. METHODS: Villous core mesenchymal cells were isolated from placentas at 14-20 weeks' gestation and cultured in vitro. Cells were treated with IL-1 beta or TNF-alpha in dose-response and time-course studies. We measured G-CSF mRNA expression by Northern blot analysis and G-CSF protein production by enzyme-linked immunosorbent assay of the conditioned media. RESULTS: Unstimulated mesenchymal cells expressed negligible G-CSF. Steady-state G-CSF mRNA expression was maximal 3-6 hours after IL-1 beta treatment and 6-18 hours after TNF-alpha treatment. Each cytokine induced G-CSF protein production in dose-and time-dependent manners, with IL-1 beta more potent than TNF-alpha. The G-CSF mRNA expression and G-CSF protein production induced by the combination of both cytokines exceeded that induced by either cytokine alone. CONCLUSIONS: Interleukin-1 beta and TNF-alpha stimulate G-CSF production by placental villous core mesenchymal cells in vitro. These results identify a potential mechanism by which villous core mesenchymal cells mediate, in part, the placental response to these two cytokines.  相似文献   

9.
Mitogen-activated protein kinases (MAPKs) are activated by a variety of extracellular stimuli, including agonists for G protein-coupled receptors. Using transient transfection of COS-7 cells, we have studied the stimulation of a hemagglutinin-tagged p44mapk (p44HA-mapk) by receptors coupled to Gs, Gq, and Gi. Agonists that act via all three G proteins stimulated p44HA-mapk activity. A constitutively activated alpha s mutant, forskolin, and a cAMP analog also increased p44HA-mapk activity, indicating that cAMP in COS-7 cells, in contrast to other cell types, activates the MAPK pathway. Similarly, a constitutively activated alpha q mutant, overexpression of phospholipase C-beta 2, and a phorbol ester also stimulated p44HA-mapk, suggesting that Gq-coupled receptors stimulate the MAPK pathway by increasing phosphatidylinositol turnover and probably stimulating protein kinase C. In COS-7 cells, in contrast to Rat-1 cells, mutationally activated alpha i did not stimulate the MAPK pathway. G protein beta and gamma subunits, overexpressed together, did activate p44HA-mapk; this finding suggests that in COS-7 cells Gi-coupled receptors may stimulate the MAPK pathway through beta gamma. These unexpected results in COS-7 cells show that G proteins and second messengers regulate the MAPK pathway differently in different cell types.  相似文献   

10.
Two obstacles limiting the efficacy of nearly all cancer gene therapy trials are low gene transduction efficiencies and the lack of tumor specificity. Recently, a replication-competent, E1B-attenuated adenovirus (ONYX-015) was developed that could overcome these limitations, because it was capable of efficiently and selectively destroying tumor cells lacking functional p53. In an attempt to improve both the efficacy and safety of this approach, we constructed a similar adenovirus (FGR) containing a cytosine deaminase (CD)/herpes simplex virus type-1 thymidine kinase (HSV-1 TK) fusion gene, thereby allowing for the utilization of double-suicide gene therapy, which has previously been demonstrated to produce significant antitumor effects and potentiate the therapeutic effects of radiation. The FGR virus exhibited the same tumor cell specificity and replication kinetics as the ONYX-015 virus in vitro. Importantly, both the CD/5-FC and HSV-1 TK/GCV suicide gene systems markedly enhanced the tumor cell-specific cytopathic effect of the virus, and, as expected, sensitized tumor cells to radiation. By contrast, neither the FGR virus nor either suicide gene system showed significant toxicity to normal human cells. Both suicide gene systems could be used to suppress viral replication effectively, thereby providing a means to control viral spread. The results support the thesis that the three-pronged approach of viral therapy, suicide gene therapy, and radiotherapy may represent a powerful and safe means of selectively destroying tumor cells in vivo.  相似文献   

11.
12.
Exhaustive characterizations of antisera to the structurally related peptides pancreatic polypeptide (PP), neuropeptide Y (NPY), and peptide YY (PYY) enabled us to establish the developmental pattern of these peptides in rat and mouse pancreas. PYY was the earliest detectable peptide and was present in all early appearing endocrine cell types. NPY appeared later and occurred exclusively in a subpopulation of insulin cells, whereas PP cells arose latest. At the earliest stage studied, all endocrine cells stored PYY. Most of these cells also contained glucagon. Subsequently, the endocrine cells comprised glucagon+PYY cells and glucagon+PYY+insulin cells. Later, cells storing either only insulin or insulin+PYY appeared. Quantitations of the relative numbers of these cell populations during development were consistent with a precursor role of triple-positive (insulin+glucagon+PYY) cells. Moreover, bromodeoxyuridine (BrdU) injections at E15.5 showed that a large percentage of triple-positive cells were in S-phase and therefore were actively dividing, whereas almost no pure insulin cells or insulin+PYY cells synthesized DNA at this time. These results suggest that PYY-positive endocrine cells may represent precursors for mature islet cells.  相似文献   

13.
The serum levels of choline decreased by approximately 50% in patients having a surgery under general as well as epidural anesthesia. The decrease is lasts for two days after surgery. Intravenous administration of succinylcholine, either by a single bolus injection or by a slow continuous infusion, increased the serum choline levels several folds during surgery. In these patients, a significant decrease in the serum choline levels was observed one and two days after surgery. In 16 pregnant women at the term, serum choline levels were higher than the value observed in 19 nonpregnant women. The serum choline levels decreased by about 40% or 60% after having a childbirth either by vaginal delivery or caesarean section, respectively. Serum choline levels in blood obtained from 9 patients with traumatic head injury were significantly lower than the observed levels in blood samples obtained from healthy volunteers. These observations show that serum choline levels increase during pregnancy and decrease during stressful situations in humans.  相似文献   

14.
15.
Here we provide proof that the injection of tumor cells engineered to secrete interleukin 2 (IL-2)-IgG chimeric proteins locally induces potent antitumor responses, which are more effective than tumor transfection with IL-2 alone. Murine plasmacytoma cells (J558L) were stably transfected with DNA coding for a human IL-2-IgG1 or a murine IL-2-IgG2b fusion protein and were injected s.c. into syngeneic BALB/c mice. Evaluation of tumor growth and rejection patterns showed that IL-2-IgG secretion by transfected J558L tumor cells induced their rejection in all animals tested, similar to the rejection of J558L cells engineered to secrete IL-2 alone, whereas treatment with parental cells was lethal. However, mice treated with IL-2-IgG-secreting J558L cells (human IL-2-IgG1 and murine IL-2-IgG2b) exhibited a significantly stronger tumor immunity against a later challenge with parental J558L cells than mice treated with IL-2-secreting tumor cells.  相似文献   

16.
The laxative action of phenolphthalein (5) is believed to result from induction of potassium and water efflux from the colon epithelium. In cultured cells, K+ efflux is promoted by 5 and by a contaminant (1) present in commercial phenol red. Six compounds with chemical structures related to those of 5 and 1 were tested for ability to induce the release of 86Rb from COS-7 cells preloaded with this isotope: 4,4'-(9-fluorenylidene)diphenol (2), 4, 4'-(9-fluorenylidene)dianiline, 4, 4'-(9-fluorenylidene)bisphenoxyethanol, 1,1'-bi-2-naphthol, 4, 4'-biphenol, and bis(4-hydroxyphenyl)methane. With one exception these compounds were all inactive at a concentration of 10 microM. However, 2 caused profound 86Rb efflux at concentrations as low as 100 nM. Concentrations of 5 1-2 orders of magnitude higher were needed to achieve similar levels of activity. The three compounds known to be active in this experimental system share a common feature that is absent in all the inactive compounds: a five-membered ring structure, one of whose carbon atoms is disubstituted with p-hydroxyphenyl residues. Because 2 and 5 are readily available, comparative studies on the mechanism of action of these biphenols at the cellular level can now be undertaken.  相似文献   

17.
The production of nitric oxide (NO) from L-arginine by nitric oxide synthase (NOS) in cytokine-stimulated vascular smooth muscle cells (VSMC) is thought to play an important role in the pathophysiology of several vascular disease states including septic shock. This study examines the relationship between cytokine-stimulated NO production and L-arginine transport in cultured VSMC. Cultured VSMC from rat aorta were stimulated with interleukin-1 beta, tumor necrosis factor-alpha, and/or angiotensin II (Ang II); and the accumulation of nitrite, a stable product of NO metabolism, in the culture media and the rates of net L-arginine uptake were measured. Interleukin-1 beta and tumor necrosis factor-alpha, alone or in combination, stimulated both the uptake of L-arginine and the accumulation of nitrite in the culture media in a dose-dependent manner. Inhibition of NOS activity by substituted analogues of L-arginine had no effect on cytokine-stimulated L-arginine transport. Ang II in the presence of cytokines up-regulated L-arginine transport while inhibiting nitrite accumulation. Two forms of the L-arginine transporter, cat-1b and cat-2, are expressed in VSMC. Northern analysis revealed that the cytokine-stimulated increase in L-arginine transport coincided with increased levels of cat-2 mRNA. In contrast, cat-1b does not appear to be regulated by cytokines at the mRNA level, although significant increases in response to Ang II were observed. These results show that, while cytokines can stimulate both NOS activity and L-arginine uptake, NO production is not required to signal the increase in L-arginine transport. Furthermore, Ang II and cytokine stimulation of L-arginine uptake involves the differential regulation of the cationic amino acid transporter (cat) genes.  相似文献   

18.
19.
Human breast cell carcinoma MCF-7 cells were found to bind 125I-labeled rat amylin (rAmylin) and the peptide amylin antagonist radioligand 125I-AC512 with high affinity. This high affinity binding possessed characteristics unique to the already defined high affinity binding site for amylin in the rat nucleus accumbens [Mol. Pharmacol. 44:493-497 (1993); J. Pharmacol. Exp. Ther. 270:779-787 (1994); Eur. J. Pharmacol. 262:133-141 (1994)]. To further define this receptor, we report results of expression cloning studies from an MCF-7 cell library. We isolated two variants of a seven-transmembrane receptor that were identical to two previously described human calcitonin receptors (hCTR1 and hCTR2). These receptors were characterized by expression in different surrogate host cell systems. Transient expression of hCTR1 in COS cells yielded membranes that bound 125I-AC512 and 125I-salmon calcitonin with high affinity, but no high affinity binding was observed with 125I-human calcitonin (hCAL) or 125I-rAmylin. Stable expression of hCTR1 in HEK 293 cells produced similar data. In contrast, expression of hCTR2 in COS cells yielded membranes that bound 125I-AC512, 125I-hCAL, and 125I-rAmylin with high affinity. The agonists 125I-hCAL and 125I-rAmylin bound 65% and 1.5%, respectively, of the sites bound by the antagonist radioligand 125I-AC512 in this expression system. This pattern of binding was repeated in HEK 293 cells stably transfected with hCTR2 (125I-hCAL = 24.8% Bmax, 125I-rAmylin = 8% Bmax). In both expression systems, the agonists hCAL and rAmylin were much more potent in displacing their radioligand counterparts than was the antagonist radioligand 125I-AC512. For example, the pKi value for displacement of 125I-AC512 by rAmylin was 7.2 in HEK 293 cells but rose to 9.1 when displacing 125I-rAmylin. Finally, hCTR2 was expressed in baculovirus-infected Ti ni cells. In this system, only specific binding to the antagonist 125I-AC512 and agonist 125I-hCAL was observed; no binding to 125I-rAmylin could be detected. These data are discussed in terms of two working hypotheses. The first is that amylin is a weak agonist for hCTR2 and that this receptor is unrelated to the amylin receptor found in this cell line. The second is that hCTR2 couples to different G proteins for calcitonin and amylin function in different cells. At present, these data cannot be used to disprove conclusively either hypothesis.  相似文献   

20.
A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号