首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compact and novel modified planar inverted-F antenna (PIFA) for dual ISM-band application is proposed. The proposed antenna, including a small ground plane, occupies a volume of 20/spl times/23.7/spl times/0.8 mm/sup 3/ (FR-4). The impedance bandwidth with 10 dB return loss is about 150 MHz (2380-2530 MHz) for 2.4 GHz band and 1450 MHz (5130-6580 MHz) for 5 GHz band. The measured radiation patterns are approximately omnidirectional and yield a gain of 1.0 dBi at 2440 MHz and 3.98 dBi at 5600 MHz, respectively.  相似文献   

2.
CPW-fed compact monopole antenna for dual-band WLAN applications   总被引:1,自引:0,他引:1  
Kim  T.H. Park  D.C. 《Electronics letters》2005,41(6):291-293
A compact CPW-fed monopole antenna is proposed for dual-band wireless local area network (WLAN) operations. The proposed antenna, which consists of two strips, has compact size of 20/spl times/15.5/spl times/1.6 mm/sup 3/ including the ground. The proposed antenna effectively covers both 2.4 GHz (2.4-2.484 GHz) and 5 GHz (5.15-5.825 GHz) bands. The measured peak gains are 1.3 dBi at 2.44 GHz and 2.8 dBi at 5.32 GHz.  相似文献   

3.
Joseph  M. Paul  B. Raj  R.K. Mohanan  P. 《Electronics letters》2004,40(23):1460-1461
A novel compact wideband antenna for wireless local area network (WLAN) applications in the 2.4 GHz band is presented. The proposed low profile antenna of dimensions 15/spl times/14.5/spl times/1.6 mm offers 18.6% bandwidth and an average gain of /spl sim/5 dBi. The antenna can be excited directly using a 50 /spl Omega/ coaxial probe.  相似文献   

4.
提出了一种新型的应用于2.4/5GHz蓝牙和无线局域网的双频内置平面倒F天线。该天线结构紧凑,可以方便地植入无线通信设备中,有较强的实用性。通过加载F形槽和阶梯形槽使天线能够满足无线局域网中小型化双频天线的技术要求。天线在蓝牙频段阻抗带宽达到300MHz(2.21~2.51GHz),在无线局域网频段阻抗带宽达到1070MHz(4.95~6.02GHz),辐射方向图表明该天线全向性能较好,增益在3.1~6.7dBi范围内。  相似文献   

5.
Liu  W.-C. Liu  H.-J. 《Electronics letters》2006,42(15):837-839
A compact and simple coplanar waveguide (CPW)-fed monopole antenna for 5 GHz wireless communication is proposed. By properly adjusting the lengths of both the monopole strip and the inverted L-shaped ground, the designed antenna, with, including ground plane, only 9/spl times/9.5 mm/sup 2/, can operate at the desired 5.2 or 5.8 GHz band. The electromagnetic coupling effect between the radiating strip and the ground on excitation of the resonant mode has been studied. Prototypes of the proposed antenna have been constructed and experimentally studied. Measured results show a -10 dB impedance bandwidth and an average antenna gain of 400 MHz and >6 dBi, respectively.  相似文献   

6.
In this paper, a novel multiple slot loading technique is studied in detail for the isolation enhancement of the dual‐band MIMO antenna system. The proposed MIMO antenna design consists of the microstrip patch loaded with T‐shaped slots parallel to the non‐radiating edge of the patch. The frequency tuning could be achieved by varying the length of the T‐shape slot arm. The proposed MIMO antenna system is optimised for operation in WLAN and WiMAX applications. The isolation enhancement is achieved by providing simple multiple slots loaded in the ground plane between radiating elements. The length of the slots is λ/4 . The system is fabricated and tested using a vector network analyser and anechoic chamber. The reduction in mutual coupling up to ?29.16 dB and ?24.09 dB for the 2.4 GHz and 3.4 GHz, respectively, is achieved. The bandwidths are 62.3 MHz (3.33–3.39 GHz) and 55.5 MHz (2.37–2.42 GHz), respectively. The total gain obtained in this case is 1.8 dBi at 2.4 GHz and 1.2 dBi at 3.4 GHz, respectively. The dimensions of the proposed designed antenna are 70 mm × 60 mm × 1.6 mm. The results were also verified through mutual coupling parameters like envelope correlation coefficient (ECC) and channel capacity loss (CCL) at the desired frequencies.  相似文献   

7.
Reduction in antenna size by using multi-band radiators play a vital role in the miniaturization of present world wireless handheld devices, as dual band behaviour of the antennas result in the integration of more than one communication standard in a single system and thus, saving the installation space required for separate antennas. In this context, this communication presents a shorted-pin dual band metamaterial inspired microstrip patch antenna array. Under the unloaded conditions, the traditional patch antenna array resonates at 5.8 GHz with gain of 9.8 dBi and bandwidth of 540 MHz. However, when each patch of this traditional antenna array is loaded with split ring resonator (SRR) and a metallic via hole is introduced in the patch, the same antenna array produces an additional resonant frequency in IEEE 802.11b/g/n 2.45 GHz Wi-Fi band with bandwidth and gain of 290 MHz and 5.6 dBi, respectively, while the initial resonant frequency (i.e. 5.8 GHz) gets shifted to IEEE 802.11ac 5 GHz Wi-Fi band, providing the gain and bandwidth of 11.4 dBi and 510 MHz, respectively. The proposed antenna array has been fabricated, and the measured results are presented to validate the proposed array. Moreover, the equivalent circuit of the proposed antenna array has been designed and analyzed to validate the simulated, measured and theoretical results. Attainment of dual band characteristics by incorporating the metamaterial with single band traditional patch antenna array makes this structure novel, as this has been achieved without any extra hardware cost, size and loss of structural planarity. Also, both the frequency bands of this proposed metamaterial inspired antenna array possess considerable gain and bandwidth.  相似文献   

8.
A novel metal-plate 1/spl times/2 array antenna constructed easily from a single metal plate and suited for WLAN operation in the 5.2/5.8 GHz bands (5150-5350/5725-5875 MHz) is presented. The metal-plate array antenna comprises two radiating elements series-fed by a 50 /spl Omega/ microstrip line and excited in phase, leading to a high antenna gain level (>4.0 dBi) for frequencies across the 5.2/5.8 GHz WLAN bands.  相似文献   

9.
Compact triple-band slotted monopole antenna with asymmetrical CPW grounds   总被引:1,自引:0,他引:1  
Liu  W.-C. Liu  H.-J. 《Electronics letters》2006,42(15):840-842
By embedding slots into a rectangular patch a triple-band slotted monopole antenna fed by a coplanar waveguide (CPW) with two asymmetrical ground planes can be obtained. The designed antenna, which, including the ground plane, is only 9/spl times/20 mm/sup 2/, can excite resonant modes at 2.43, 5.23 and 7.14 GHz bands with measured impedance bandwidths of 14.4, 8.2 and 16.7%, and average antenna gains of /spl ges/2.4, 4.7 and 6.7 dBi, respectively. The antenna is very compact and suitable for 2.4/5.2 GHz WLAN operations.  相似文献   

10.
Liu  W.-C. 《Electronics letters》2005,41(15):831-832
A novel compact and simple microstrip monopole antenna for 5 GHz wireless local area network (WLAN) operation is proposed. To excite a resonant mode in the operating band, a tuning strip is added to the antenna, which consists of a rectangular ring microstrip and a top loaded vertical strip, and is fed by a 50 /spl Omega/ microstrip line. The effects of the added strip to the impedance matching have been studied. A constructed prototype of the proposed antenna has been tested and bandwidth of about 930 MHz ranging from 5.03 to 5.96 GHz, monopole-like radiation pattern, and average gain of greater than 2.6 dBi over the operating band have been obtained.  相似文献   

11.
ICPA for highly integrated concurrent dual-band wireless receivers   总被引:1,自引:0,他引:1  
A single-feed dual-band integrated circuit package antenna (ICPA) is reported. The ICPA, intended for use in either single-chip or single-package highly integrated concurrent dual-band wireless receivers, is implemented in the format of a cavity-down ceramic ball grid array package of 15/spl times/15/spl times/1.9 mm/sup 3/. Results show that the ICPA achieved a frequency ratio of 2.2, return loss bandwidth of 1.67% and gain of -8 dBi at 2.4 GHz, and return loss bandwidth of 0.69% and gain of -2 dBi at 5.25 GHz.  相似文献   

12.
A new millimeter-wave printed twin dipole phased array antenna is developed at Ka band using a new microstrip-fed CPS tee junction, which does not require any bonding wires, air bridges, or via holes. The phased array used a piezoelectric transducer (PET) controlled tunable multitransmission line phase shifter to accomplish a progressive phase shift. A progressive phase shift of 88.8/spl deg/ is achieved with the 5 mm of perturber length when the PET has full deflection. Measured return loss of the twin dipole antenna is better than 10 dB from 29.5 to 30.35 GHz. Measured return loss of better than 15 dB is achieved from 30 to 31.5 GHz for a 1/spl times/8 phased array. The phased array antenna has a measured antenna gain of 14.4 dBi with 42/spl deg/ beam scanning and has more than 11 dB side lobe suppression across the scan.  相似文献   

13.
提出了一种基体背面有电磁带隙结构的倒“T”形双频微带天线。研究发现该天线具有双频带特性,其双频工作频率分别为2.4 GHz和5.2 GHz,相应的带宽为805 MHz (2.099~2.944 GHz) 和831 MHz (4.568~5.409 GHz),增益达到3.1 dBi。仿真和测试结果基本吻合,表明该天线可以很好地满足WLAN工作频段标准要求,具有很好的应用前景。  相似文献   

14.
A printed linear array antenna comprising three half-wave folded dipole elements with the first two elements operating in the 5 GHz band and the third one operating in the 2.4 GHz band for WLAN operation is presented. The array antenna provides directional radiation patterns with vertical polarisation for frequencies across both the 2.4 and 5 GHz WLAN bands, and the measured antenna gain is 3.5-3.7 dBi for the 2.4 GHz band and 4.5-5.0 dBi for the 5 GHz band.  相似文献   

15.
提出了一种适用于射频识别手持读写器的双频单层微带天线新颖设计,适用于超高频频段(920~925MHz)和ISM频段(2.4 ~2.5GHz)的射频识别系统.切四角和中心方形结合缝隙结构,实现了天线的小型化设计,满足了天线设计要求,选用廉价FR4板材尺寸为75mm×75mm×3mm.给出了天线设计思路,并利用电磁仿真软件分析了天线性能,仿真与测试结果吻合良好.天线测试结果表明:在917.1 ~936.5MHz频带范围内回波损耗小于15dB,在2.43~2.47GHz频段内小于-15dB;在UHF频段与ISM频段内,读写器天线的最大增益为0.02dBi和1.66dBi,所以本天线能满足我国射频识别读写器的应用要求,具有良好的应用前景.  相似文献   

16.
Liu  W.-C. Chen  J.-K. 《Electronics letters》2009,45(18):929-931
By using twin stepped-patch radiators and a protruded ground, a micro-strip-fed monopole antenna with wide dual-band operation can be obtained. The proposed antenna with an overall size of 32 times 25 mm can excite resonances at the 2.61 and 5.52 GHz bands with impedance bandwidths of 710 MHz (2.32-3.03 GHz) and 1.56 GHz (4.77-6.33 GHz), average antenna gains of 2.9 and 3.5 dBi, respectively, and also monopole-like radiation patterns. These properties make the antenna suitable for 2.4/5.2/5.8 GHz WLAN applications.  相似文献   

17.
A novel compact modified inverted-L monopole antenna for dual-band operation is proposed. The proposed antenna is designed to operate in 2.4 GHz (2400-2484 MHz) and 5 GHz (5150-5825 MHz) bands for WLAN applications in IEEE 802.11a/b and HIPERLAN/2 systems. The method to realise the desired dual-band operation is by introducing a meandered wire and a conducting triangular section to a conventional inverted-L monopole, which results in a small antenna size of 7/spl times/18 mm/sup 2/. Good impedance bandwidth performance is also observed.  相似文献   

18.
A monopole antenna having desirable transmission characteristics with high gain is proposed. The monopole antenna comprises 45° tilted square shaped patch and modified rectangular metallic ground plane on FR4 dielectric substrate. The proposed monopole antenna operates from 2.6 GHz to 9.7 GHz with maximum peak gain of 2.3 dBi. Now, a dual-layer aperture-type FSS is designed having a passband from 5.9 GHz to 9.2 GHz and incorporated with the proposed monopole antenna. Thus, the combination only covers the selective frequency band from 5.5 GHz to 8.7 GHz with a stable gain of around 5 dBi. Second, another FSS is designed, which has one stop-band from 4.1 GHz to 5.4 GHz and two passbands on the both sides of this stop-band. This combination does not work from 4.1 GHz to 5.5 GHz but covers dual band from 2.48 GHz to 3.3 GHz with a peak gain of 5 dBi and 5.5 GHz to 10 GHz with a peak gain of 5.5 dBi. Therefore, without modifying the antenna design, any tunable transmission band can be achieved by the proposed combination. The proposed antenna and FSS combination structure may be suitable for military wireless applications for its band selection characteristics.  相似文献   

19.
A circular slot antenna fed by a coplanar waveguide (CPW) is proposed for dual-band operations. Dual frequency bands that cover the 2.4 GHz (2400-2484 MHz) and 5 GHz (5150-5825 MHz) bands were obtained by embedding a pair of slits in the circular back-patch that is printed on the backside of the substrate and concentric with the circular slot. This design resulted in broadside far-field patterns with low cross-polarisation levels in both frequency bands and a small antenna size of 40/spl times/40 mm with the ground plane regarded as part of the antenna structure.  相似文献   

20.
This paper presents the integrated amateur band and ultra-wide band (UWB) monopole antenna with integrated multiple band–notched characteristics. It is designed for avoiding the potential interference of frequencies 3.99 GHz (3.83 GHz–4.34 GHz), 4.86 GHz (4.48 GHz–5.63 GHz), 7.20 GHz (6.10 GHz–7.55 GHz) and 8.0 GHz (7.62 GHz–8.47 GHz) with VSWR 4.9, 11.5, 6.4 and 5.3, respectively. Equivalent parallel resonant circuits have been presented for each band-notched frequencies of the antenna. Antenna operates in amateur band 1.2 GHz (1.05 GHz–1.3 GHz) and UWB band from 3.2 GHz–13.9 GHz. Different substrates are used to verify the working of the proposed antenna. Integrated GSM band from 0.6 GHz to 1.8 GHz can also be achieved by changing the radius of the radiating patch. Antenna gain varied from 1.4 dBi to 9.8 dBi. Measured results are presented to validate the antenna performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号