首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
La0.67Mg0.33Ni2.5Co0.5贮氢合金的制备和MH电极性能研究   总被引:9,自引:0,他引:9  
采用高频感应熔炼方法制备了PuNi3型La0.67Mg0.33Ni2.5Co0.5合金;用X射线衍射分析和电化学方法研究了添加不同Mg含量以补偿Mg元素烧损时合金的组织结构和电化学性能。X射线衍射分析(XRD)表明,铸态合金由.PuNi3型主相和少量的CaCu5型第二相组成,铸态合金经1223K和10h退火处理后,CaCu5型第二相可明显减少,其中Mg增加10%时得到纯度较高的PuNi3型组织。电化学测试表明,增加适当Mg含量和进行退火热处理能明显提高和改善合金电极容量、循环稳定性和大电流放电性能。与AB5型和。482型Laves相贮氢合金比较,PuNi3型La0.67Mg0.33Ni2.5Co0.5贮氢合金具有电极容量高及优良的大电流放电性能。  相似文献   

2.
用快淬工艺制备了纳米晶和非晶Mg2Ni型Mg2 -xLaxNi (x=0,0.2,0.4,0.6)贮氢电极合金,获得长度连续,厚度约为30μm,宽度约为25 mm的薄带.用XRD、SEM和HRTEM分析了快淬合金薄带的微观结构,测试了合金薄带的电化学性能及电化学交流阻抗谱(EIS).快淬无La合金具有典型的纳米晶结构,...  相似文献   

3.
采用感应熔铸+退火处理及快速凝固方法制备了La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金。系统研究了快速凝固对合金的相结构、微观组织及电化学性能的影响。XRD分析表明,随着冷却速率的增加,La2Mg0.9Ni7.5Co1.5Al0.1合金的相组成发生了明显变化。退火合金由αLa2Ni7主相(Ce2Ni7型结构)和少量LaNi3相(PuNi3型结构)组成。随着冷却速率的增加,合金中出现LaNi5相(CaCu5型结构)和LaMgNi4(MgCu4Sn型结构)相,且新相的相丰度增加,aLa2Ni7相和LaNi3相的丰度减少。EPMA分析表明,快速凝固方法制备的La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金为柱状晶组织且晶粒细小。合金电极的电化学测试表明,冷却速率对合金的活化性能影响不大。随冷却速率的增加,合金的最大放电容量减少、高倍率放电性能下降。在较低的冷却速率下(5m/s),合金电极的循环稳定性改善不明显,而随着凝固速度的进一步增加(20m/s),合金电极表现出较好的循环稳定性。  相似文献   

4.
采用电化学测试技术、X射线衍射等技术研究了Ti0.8Zr0.2V1.6Mn0.8Ni0.6(0≤x≤0.64)贮氢电极合金的结构和电化学放电特性。研究表明:合金由C14 Laves相和BCC相构成;铬替代锰的量越多,枝晶组织越粗大。X射线衍射发现替代影响合金的晶格参数。合金的最大电化学放电容量为545mAh/g,电化学活化容易,但循环性能比较差。随着替代量增大,由于铬抑制了钛、锆和钒元素的表面迁移和氧化使合金的循环性能退化明显减轻,但同时因为替代使晶胞过大导致最大电化学放电容量有所降低。  相似文献   

5.
为了改善Mg2Ni型贮氢合金的电化学贮氢性能,以Co部分替代合金中的Ni,用快淬工艺制备Mg2Ni型Mg2Ni1-xCox(x=0,0.1,0.2,0.3,0.4)合金,获得长度连续、厚度约为30μm、宽度约为25 mm的快淬合金薄带。并用XRD、SEM、HRTEM分析快淬态合金薄带的微观结构;用DSC研究快淬薄带的热稳定性;用程控电池测试仪测定合金薄带的电化学贮氢性能;探索Co替代Ni对快淬Mg2Ni型合金结构及电化学贮氢性能的影响。结果表明:在快淬无Co合金中没有发现非晶相,但快淬含Co合金中存在明显的非晶结构,证明Co替代Ni提高了Mg2Ni型合金的非晶形成能力。Co替代Ni使快淬态合金的热稳定性略有提高,显著地改善了合金的电化学贮氢性能,包括放电容量、电化学循环稳定性以及高倍率放电性能,这主要归因于Co替代Ni导致结构的变化以及非晶形成能力的提高。  相似文献   

6.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

7.
用铸造及快淬工艺制备Mg2Ni型Mg2-xLaxNi(x=0,0.2,0.4,0.6)贮氢合金。用XRD、SEM、HRTEM分析铸态及快淬态合金的微观结构。结果发现,在快淬无La合金中没有出现非晶相,但快淬含La合金显示了以非晶相为主的结构。用DSC研究快淬合金的热稳定性,表明La的含量及快淬对非晶相的晶化温度影响很小。电化学测试结果表明,铸态合金的放电容量随La含量的增加而增加,快淬态合金的放电容量随La含量的变化有极大值。La替代Mg显著地提高了铸态及快淬态合金的循环稳定性。  相似文献   

8.
热处理对低Co贮氢合金Ml(NiCoMnAlFe)_5电化学性能的影响   总被引:6,自引:4,他引:6  
系统研究了热处理对低Co贮氢电极合金Ml(NiCoMnAlFe) 5 电化学性能的影响。结果表明 ,铸态合金的放电容量为 2 97mA·h/g ,经 2 68次充放电循环后的容量保持率为 68% ;经热处理后 ,合金的放电容量提高至30 2mA·h/g ,2 68次充放电循环后的容量保持率提高至 80 % ,热处理提高了合金的放电容量和循环稳定性 ;同时发现热处理会导致合金高倍率放电特性的恶化。XRD测试表明 ,热处理降低了晶格应力与晶格缺陷 ,改善了合金的成分均匀性 ,从而提高了合金的放电容量和循环稳定性。  相似文献   

9.
为了改善Mg2Ni型合金的贮氢动力学性能,用Co部分替代合金中的Ni,用快淬技术制备了Mg2Ni1?xCox(x=0,0.1,0.2,0.3,0.4)贮氢合金。用XRD、HRTEM表征了快淬态合金的微观结构,用自动控制的Sieverts设备测试了合金的吸放氢动力学性能,用程控电池测试仪测定了合金薄带的电化学贮氢动力学。结果表明:Co替代Ni提高了Mg2Ni型合金的非晶形成能力,合金的非晶化程度随着Co含量的增加而增加。此外,Co替代Ni显著地改善了合金的贮氢动力学,当Co含量从0增加到0.4时,快淬态(15m/s)合金在5min内的吸氢饱和率从81.2%增加到84.9%,20min的放氢率从17.60%增加到64.79%,氢扩散系数从1.07×10-11cm2/s增加到2.79×10?11cm2/s,极限电流密度从46.7mA/g增加到191.7mA/g。  相似文献   

10.
提高Mg—Ni贮氢合金电极性能的因素   总被引:3,自引:3,他引:3  
Mg-Ni合金作为大容量贮氢电极材料有很好的应用前景,但其电容量衰退快,寿命短,限制了目前的进一步开发应用,本文分析了影响贮氢合金电极放电性能的因素,综述了提高贮氢合金电极综合电化学性能的各种可行性方法。  相似文献   

11.
1 INTRODUCTIONDuringthelastdecade ,thedemandforthenickel/metal hydride (Ni/MH )secondarybatterieshasbeengrowingrapidlybecauseoftheirhighenergydensity ,highHRD ,longcharge dischargecyclelifeandfriendlyenvi ronmentalproperties[14 ] .Hydrogenstoragealloys ,astheneg…  相似文献   

12.
氟化处理对La0.67Mg0.33Ni2.25Co0.75贮氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
采用扫描电镜、充放电测试、线性极化和电位阶跃等方法研究了氟化处理对La0.67Mg0.33Ni2.25Co0.75贮氢合金电化学性能的影响。结果表明,氟化处理提高了合金电极的循环稳定性,合金电极50次充放电循环后的容量保持率显著提高。同时,氟化处理也提高合金电极的交换电流密度,降低极化电阻,并且有利于氢在合金中的扩散,从而显著改善合金的高倍率放电性能 (HRD)  相似文献   

13.
用X射线衍射(XRD)、中子衍射(NRD)和Rietveld全谱拟合方法分析和研究PuNi3型La0.67Mg0.33Ni2.5Co0.5合金及其充氘后的氘化物晶体结构。结果表明,退火合金La0.67Mg0.33Ni2.5Co0.5由主相(La,Mg)Ni3相(PuNi3-type)和少量LaMgNi4相(MgCu4Sn-type)及La2Ni7相(Ce2Ni7-type)组成;Co元素在(La,Mg)Ni3相中主要分布在AB5单元中6c和AB5/AB2单元共格处的18h位置上;合金充满氘后形成了La0.67Mg0.33Ni2.5Co0.5D4.0,D原子在(La,Mg)Ni3相中主要占据RM5单元中的36i2、18h5、6c4及RM2单元内的6c1、18h3和18h1位置上,其中RM5单元中的氘含量为6.5(1)D/f.u.,而RM2单元中吸纳的氘量为3.2(2)D/f.u.。充氘后La0.67Mg0.33Ni2.5Co0.5D4.0晶胞整体基本呈各向同性膨胀(δa/a=7.1%,δc/c=9.1%),但在RM2单元中其各向异性膨胀较大(δc/c=15.8%,δV/VRM2=32.8%),而在RM5单元中各...  相似文献   

14.
采用电子探针(EPMA)、X射线衍射(XRD)和电化学测试研究了在6 mol/L KOH电解液中添加Cu(OH)2对La2MgNi7.5Co1.5贮氢合金电极电化学性能的影响.结果表明,合金电极外表面上被镀上Cu膜,Cu膜的厚度和致密性随充放电循环次数的增加而增加,合金电极表面形成致密性Cu膜,可以有效地抑制电极内部贮氢合金的氧化,但对贮氢合金颗粒粉化的抑制作用不明显.在电解液中添加Cu(OH)2,增加了La2MgNi7.5Co1.5合金电极的活化次数,降低了该合金电极的高倍率放电性能,但对合金电极的最大电化学放电容量没有负面影响.此外,利用电沉积方法在电极表面镀Cu膜能够明显改善该合金电极的电化学循环稳定性.  相似文献   

15.
对比研究了烧结法和熔炼法制备的Ti3Ni2合金的储氢性能。结果显示,烧结合金具有多孔特性,有利于提高合金的电化学储氢性能。烧结合金的最大放电容量Cmax为305mAh/g,其值远高于熔炼合金的Cmax(242mAh/g)。另外,烧结合金在电化学动力学方面也优于熔炼合金,这主要是由于采用烧结法可以改善氢在Ti3Ni2合金中的扩散,从而使氢的扩散系数(D)从7.16×10-10cm2/s(熔炼合金)提高到3.2×10-9cm2/s(烧结合金)。  相似文献   

16.
系统研究了Co替代Ni对LaNi3.8型LaNi3.8-xCox(x=0.0,0.2,0.4,0.6)贮氢合金组织结构和电化学性能的影响。研究表明,所有合金都由LaNi5、Ce5Co19和Pr5Co19相组成。随着Co含量的增加,3个相的相丰度发生变化,而且单胞体积也相应的增加,这使得合金的放氢平台压降低到镍氢电池需要的范围(0.01~0.1 MPa)。与LaNi3.8相比,含Co合金的循环性能得到改善。LaNi3.4Co0.4具有最大的放电容量,这一点与固态放氢量一致。LaNi3.6Co0.2倍率放电性能最好,具有最大的交换电流密度(Io)和最小的电荷转移电阻(Rct)。  相似文献   

17.
Mg58Al42储氢合金的制备及其电化学性能   总被引:1,自引:0,他引:1  
采用机械合金化技术制备了Mg58Al42储氢合金并借助于X射线衍射仪、PARM273A和M5210电化学综合测试仪研究了其在不同球磨时间下的物相结构以及放电容量和耐腐蚀等电化学性能. 结果表明:合金粉末经高能球磨后产生了Mg17Al12新相,随着球磨时间的增加,衍射峰的相对强度下降,衍射峰变宽,合金的平均晶粒尺寸降低,内应力增大.合金的放电容量随球磨时间的延长先增加而后则降低,其中球磨20 h时,放电容量最大.合金的动电位极化曲线出现了钝化现象,合金腐蚀电流密度随球磨时间的延长先增大而后降低.合金的交流阻抗谱均由单容抗弧组成,电极反应受合金/电解质溶液界面的电荷迁移所控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号