首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Din  R. D. Gould 《Thin solid films》1999,340(1-2):28-32
Cadmium arsenide is a II–V semiconductor which exhibits n-type intrinsic conductivity with high mobility up to μn=1.0–1.5 m2/V s. Potential applications include magnetoresistors and both thermal and photodetectors, which require electrical characterization over a wide range of deposition and measurement conditions. The films were prepared by vacuum evaporation with deposition rates in the range 0.5–6.0 nm/s and substrate temperatures maintained at constant values of 20–120°C. Sandwich-type samples were deposited with film thicknesses of 0.1–1.1 μm using evaporated electrodes of Ag and occasionally Au or Al. Above a typical electric field Fb of up to 5×107 V/m all samples showed instabilities characteristic of dielectric breakdown or electroforming. Below this field they showed a high-field conduction process with logJV1/2, where J is the current density and V the applied voltage. This type of dependence is indicative of carrier excitation over a potential barrier whose effective barrier height has been lowered by the high electric field. The field-lowering coefficient β had a value of (1.2–5.3)×10−5 eV m1/2/V1/2 which is reasonably consistent with the theoretical value of βPF=2.19×10−5 eV m1/2/V1/2 expected when the field-lowering occurs at donor-like centres in the semiconductor (Poole–Frenkel effect). For thinner films Schottky emission was more probable. The effects of the film thickness, electrode materials, deposition rate, and substrate temperature on the conductivity behaviour are discussed.  相似文献   

2.
Field emission properties of carbon nanotubes with different morphologies   总被引:2,自引:0,他引:2  
The field emission behavior of base-model well-aligned carbon nanotubes (Base-CNTs), curled carbon nanotubes (Curled-CNTs), and tip-model well-aligned CNTs (Tip-CNTs) was examined. The nanotubes were fabricated by means of direct current plasma-enhanced chemical vapor deposition using different ammonia (NH3) pre-treatment plasma currents. The turn-on electric field values required to obtain a 10-nA current for Base-CNTs, Curled-CNTs, and Tip-CNTs were determined at 3.8, 4.3, and 4.9 V/μm, respectively. The field enhancement factor γ of Base-CNTs, calculated from a Fowler–Nordheim plot, was higher than that for the Curled-CNTs and Tip-CNTs. In the presence of a strong electric field, argon ion irradiation permanently straightened the as-grown Curled-CNTs films. The straightening process enhanced the emission properties of the as-grown Curled-CNTs films by decreasing the turn-on field and increasing the total emission current. Thus, morphology parameters of the MWNTs significantly affect the emission properties of CNTs.  相似文献   

3.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

4.
Microcrystalline silicon carbide (μc-Si1−xCx) films were successfully deposited by the hot wire cell method using a gas mixture of SiH4, H2 and C2H2. It was confirmed by Fourier transform infrared and X-ray diffraction analyses that the films consisted of μc-Si grains embedded in a-Si1−xCx tissue. The p-type μc-Si1−xCx films were deposited using B2H6 as a doping gas. A dark conductivity of 0.2 S/cm and an activation energy of 0.067 eV were obtained. The p-type μc-Si1−xCx was used as a window layer of a-Si solar cells, in which the intrinsic layer was deposited by photo-chemical vapor deposition, and an initial conversion efficiency of 10.2% was obtained.  相似文献   

5.
Nanocrystalline diamond films have been deposited using a microwave plasma consisting of argon, 2–10% hydrogen and a carbon precursor such as C60 or CH4. It was found that it is possible to grow the diamond phase with both carbon precursors, although the hydrogen concentration in the plasma was 1–2 orders of magnitude lower than normally required in the absence of the argon. Auger electron spectroscopy, X-ray diffraction measurements and transmission electron microscopy indicate the films are predominantly composed of diamond. Surface roughness, as determined by atomic force microscopy and scanning electron microscopy indicate the nanocrystalline films grown in low hydrogen content plasmas are exceptionally smooth (30–50 nm rms) to thicknesses of 10 m. The smooth nanocrystalline films result in low friction coefficients (μ = 0.04–0.06) and low average wear rates as determined by ball-on-disk measurements.  相似文献   

6.
Thin films of CuGaTe2 with thicknesses in the range, 0.1–1.0 μm were deposited on Corning 7059 glass substrates by flash evaporation. The substrate temperatures, Ts, were maintained in the range 373–623 K. The transmittance of the films was recorded in the wavelength range 900–2500 nm. The dependence of the optical band gap, Eg, on substrate temperature showed that the value of Eg varied from 1.21 eV to 1.24 eV. The variation of refractive index and extinction coefficient with photon energy was studied from which the material properties such as the limiting value of dielectric constant, ε, plasma frequency, ωp, and hole effective mass, mh*, were evaluated as ε = 7.59, ωp = 1.47 × 1014 and mh* = 1.25 m0.  相似文献   

7.
This paper embodies the first report on the electrochemical deposition of RuS2 thin films. The as-deposited and heat-treated films (in argon atmosphere) were characterized by XRD, SEM and UV-VIS-NIR spectrophotometry. The polycrystalline deposits of RuS2 obtained indicated a cubic structure with a lattice constant of 5.685 Å, an average grain size around 3 μm, and an absorption co-efficient of 5 × 104 cm−1. The optical band gap was found to be 1.48 eV.  相似文献   

8.
B. X. Yang  Y. Zhu  J. Ahn  H. S. Tan  D. Lu 《Thin solid films》1995,270(1-2):210-214
Textured (100) diamond films have been successfully grown using the plasma-enhanced chemical vapor deposition technique and characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The thickness of such a (100)-oriented diamond film can be as thin as 4 μm, and the just-emerged transitional layer is found to be only 1.5 μm, which is very thin compared with the computer simulation value of 700d0, where d0 is the average distance between the nuclei. A systematic study of various parameters in the carburization and bias steps on the growth of textured (100) diamond films and the subsequent change of surface morphology has been investigated. Experimental results show that these two pre-growth steps seem to ease the growth of textured (100) diamond films and they should be optimized for a set of growth conditions. It is suggested that varying these parameters in the pre-growth steps may cause a change of microstructure, alignment of nuclei, and defect states in the diamond-like layer, resulting in the morphological change of textured (100) diamond films.  相似文献   

9.
M. Gilo  N. Croitoru 《Thin solid films》1999,350(1-2):203-208
HfO2 thin films were deposited using e-beam gun evaporation with ion assisted deposition (IAD) of low energy oxygen ions (40–100 eV) from an end-Hall ion source. A comparison was made using Hf and HfO2 starting materials. The index of refraction was measured as a function of the ion source voltage and compared to results without IAD. Application to high power laser mirrors was verified by measurements of laser damage thresholds at 1.06 μm.  相似文献   

10.
Symmetric CNx/BN:C multilayer thin films, with nominal compositional modulation periods of Λ=2.5, 5, and 9 nm were deposited by unbalanced dual cathode magnetron sputtering from C (graphite) and B4C targets in an Ar/N2 (60/40) discharge. The multilayers and single-layer of the constituent CNx and BN:C compounds were grown to a total thickness of 0.5 μm onto Si(001) substrates held at 225°C and a negative floating potential of 30 V (Ei≈24 eV). Layer characterizations were performed by TEM, X-ray reflectivity, RBS, and nanoindentation measurements. Results show that CN0.33 and BN:C (35, 50, and 15 at.% of B, N, and C, respectively) layers were prepared at the above conditions. It is suggested that all films exhibit a three-dimensional interlocked structure with a cylindrical texture in the film growth direction. The structure was continuous over relatively well defined and smooth CNx/BN:C interfaces. All coatings exhibit extreme elasticity with elastic recoveries as high as 85–90% (10 mN maximum load) attributed to the observed structure. However, the multilayers were stiffer and more elastic compared to that of the single-layers and thus shows promise for improved protective properties.  相似文献   

11.
The residual stress of multilayers in piezoelectric microelectromechanical systems structures influences their electromechanical properties and performance. This paper describes the development of residual stress in 1.6 μm Pb(Zr0.52,Ti0.48)O3 (PZT)/0.3 μm ZrO2/0.5 μm SiO2 stacks for microactuator applications. The residual stresses were characterized by wafer curvature or load-deflection measurements. PZT and zirconia films were deposited on 4-in. (100) silicon wafers with 0.5 μm thick thermally grown SiO2 by sol–gel processes. After the final film deposition, the obtained residual stress of PZT, ZrO2, and SiO2 were 100–150, 230–270, and − 147 MPa, respectively. The average stress in the stack was  80 MPa. These residual stresses are explained in terms of the thermal expansion mismatch between the layers and the substrate. Load-deflection measurements were conducted to evaluate localized residual stresses using released circular diaphragms. The load-deflection results were consistent with the average stress value from the wafer curvature measurements. It was found that more reasonable estimates of the stack stresses could be obtained when mid-point vertical deflection data below 6 μm were used, for diaphragms 0.8–1.375 mm in diameter.  相似文献   

12.
Several methods have been used to prepare ferroelectromagnetic BiFeO3 films. In this paper, we adopted a sol–gel process to fabricate BiFeO3 films on indium tin oxide (ITO)/glass substrates. X-ray diffraction pattern indicated that the samples are randomly oriented. Cross section scanning microscopy showed that the thicknesses of both films were about 1.2 μm and no apparent diffusion between the BiFeO3 films and ITO/glass substrates. Remnant polarization of 2.0 and 1.75 μC/cm2 were identified by the measuring of electric hysteresis loops for the films annealed at 500 and 600 °C respectively at an applied field of 108 kV/cm. Dielectric property and loss factor were investigated as a function of frequency. In addition, magnetism was detected at 77 K.  相似文献   

13.
A series of 0.2–0.6 μm thick SnOx films were deposited onto borosilicate and sodalime silica glass substrates by atmospheric plasma discharge chemical vapor deposition at 80 °C. SnOx films deposited from monobutyltin trichloride contained a large percentage of SnCl2:2H2O, and therefore were partially soluble in water. SnOx coatings deposited from tetrabutyltin were not soluble in water or organic solvents, had good adhesion even at growth rates as high as 2.3 nm/s, had high transparency of  90% and electrical resistivity of 107 Ω cm. As-grown tin oxide coatings were amorphous with a small concentration of SnO2, SnO and Sn crystalline phases as determined by grazing angle X-ray diffraction and X-ray photoelectron spectroscopy measurements. Upon annealing in air at 600 °C the resistivity of SnOx films decreased to 5–7 Ω cm. Furthermore, optical and X-ray measurements indicated that SnOx was converted into SnO2 (cassiterite) with a direct band gap of 3.66 eV. Annealing of as-grown SnOx films in vacuum at 340 °C led to formation of the p-type conductor SnO/SnOx. The indirect band gap of SnO was calculated from the optical spectra to be 0.3 eV.  相似文献   

14.
Calcium modified lead titanate sol was synthesized using lead acetate trihydrate, calcium nitrate tetrahydrate and titanium tetra-n-butoxide as starting materials, methanol and ethanolamine were selected as solvent and stabilizing or complexing agent, respectively. (Pb0.76Ca0.24)TiO3 thin films were prepared on platinum-coated silicon and fused silica substrates with the solution using the spinning method. The surface morphology and crystal structure, surface compositions and chemical states, electrical and optical properties of the thin films were investigated. The films have good composition homogeneity and thickness uniformity. The dielectric constant and dissipation factor of 1 kHz at room temperature were found to be 280 and 0.027, respectively, for thin films with 0.5 μm thickness annealed at 600°C for 1 h. The remanent polarization and coervive field were 15 μC/cm2 and 64 kV/cm, respectively. The thin films exhibited good optical transmissitivity, and had optical direct transitions. The dispersion relation of refractive index and wavelength followed the single electron oscillation model. The band gap of the film which annealed at 650°C was 3.68 eV. The results also confirmed that ethanolamine was very effective in preparing uniform and dense oxide films, owing to the superior stability of the sols during hydrolytic polycondensation.  相似文献   

15.
Thin near-stoichiometric silica films were deposited by plasma-enhanced chemical vapour deposition (PECVD) using pure SiH4 and O2 in a planar plasma reactor based on the proprietary uniform distributed electron cyclotron resonance (UDECR) technology. Samples were kept approximately at room temperature during the process. In the pressure range 0.1–0.4 Pa, dense ( > 5 × 1010 cm−3) diffusion plasmas could be sustained very homogeneously over areas larger than 200 mm× 200 mm. In conjunction with appropriate distributed gas injection set-up, extremely good layer uniformities were obtained, with no visible irisations for thicknesses of 0.1–6 μm. The reactor concept intrinsically lends itself to process scale-up which is even trivial along one dimension. The effects of gas flow rates and substrate r.f. bias were investigated, mainly by Fourier transform infrared absorption spectroscopy and spectroscopic ellipsometry (1.4–5.0 eV). The Si-H and O-H bond contents were found to be very low for all samples. For films deposited under sufficient ion bombardment energy, typical values for the refractive index at 2.0 eV (1.458) and the Si-O-Si stretching frequency (1075 cm−1) were very close to those obtained in the case of thermally grown silica, indicating an unusually dense microstructure for the as-deposited PECVD films grown at quasi-ambient temperature.

Transparent protective coatings 3–5 μm thick showing excellent abrasion resistance and weatherability could thus be deposited on metals and optical polymers.  相似文献   


16.
We investigated a possibility of electrochemical formation and control of zinc nitride in a molten LiCl–KCl–Li3N system at 673 K. Zinc nitride films were obtained by means of potentiostatic electrolysis of zinc electrodes in the melt. From XRD analysis, it was confirmed that obtained films consisted of Zn3N2 and LiZnN and that the composition of each film was effected by the applied potential value. In the potential range from 0.75 to 1.6 V (versus Li+/Li), the ratio of Zn3N2 increased as the applied potential was more positive. Based on the result, we achieved the formation of Zn3N2 film (3–5 μm) in anti-scandium oxide structure (a = 0.977 nm) by means of potentiostatic electrolysis at 1.6 V for 3 h.  相似文献   

17.
P.C. Joshi  S.B. Desu 《Thin solid films》1997,300(1-2):289-294
Polycrystalline BaTiO3 thin films having the perovskite structure were successfully produced on platinum coated silicon, bare silicon, and fused quartz substrate by the combination of the metallo-organic solution deposition technique and post-deposition rapid thermal annealing treatment. The films exhibited good structural, electrical, and optical properties. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) and metal-ferroelectric-semiconductor (MFS) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 255 and 0.025, respectively, and the remanent polarization and coercive field were 2.2 μC cm−2 and 25 kV cm−1, respectively. The resistivity was found to be in the range 1010–1012 Ω·cm, up to an applied electric field of 100 kV cm−1, for films annealed in the temperature range 550–700 °C. The films deposited on bare silicon substrates exhibited good film/substrate interface characteristics. The films deposited on fused quartz were highly transparent. An optical band gap of 3.5 eV and a refractive index of 2.05 (measured at 550 nm) was obtained for polycrystalline BaTiO3 thin film on fused quartz substrate. The optical dispersion behavior of BaTiO3 thin films was found to fit the Sellmeir dispersion formula well.  相似文献   

18.
The effect of annealing on the thermoelectric power of thin copper and silver films has been investigated. Using Matthiessen's rule, the thermoelectric power is separated into three components: S0 due to bulk lattice scattering, Ss due to surface scattering and Si due to scattering by imperfections. The values of S0 and Ss are independent of the film thickness, whereas Si varies with film thickness. However, Si approaches a constant value for both copper and silver when the film thickness is larger than 1000 Å. The values of Ss obtained for copper and silver films are 1.33 μV/°K and 3.23 μV/°K respectively. For thicker films (t>1000 Å), the values of Si for copper and silver films are 3.89 μV/°K and 9.63 μV/°K respectively.  相似文献   

19.
Chemical vapour deposition (CVD) diamond coatings deposited on various substrates usually contain residual stresses. Since the residual stress affects the adhesion of the coating to the substrate, as well as the performance of the coating/substrate composite in many technical applications it is of importance to study the magnitude of these stresses.

In the present study the hot flame method was used to deposit diamond coatings on cemented carbide inserts by scanning the surface with a nine flame nozzle. By varying the oxygen to acetylene flow ratio and the deposition time coatings of different qualities and thicknesses were obtained. The residual strain/stress of the coatings was measured by three different methods: X-ray diffraction using the sin2 (Ψ) method, Raman spectroscopy and disc deflection measurements. To extract the residual stress from the strain data the Young's modulus was obtained from bending tests of diamond cantilever beams manufactured from free standing diamond films. The latter technique was also used to determine the fracture stress of the diamond films.

All deposited coatings displayed a residual compressive strain/stress state. The residual strain in the diamond coatings did not vary with coating thickness (1.5 μm to 20 μm) but was found to increase from −1.8 × 10−3 to −2.2 × 10−3 with decreasing diamond quality. The compressive residual stress was found to decrease from −2 GPa to −1.3 GPa with decreasing diamond quality. This is mainly due to a decrease in Young's modulus (from 1.1 TPa to 0.6 TPa) with decreasing diamond quality. Also the fracture stress was found to decrease (from 1.8 GPa to 0.8 GPa) with decreasing diamond quality. The three methods used for measuring the stress state in the coatings, X-ray diffraction, Raman spectroscopy and deflection measurement, all give the same result. The deflection technique has the advantage that no information about the elastic properties of the coating is needed, whereas Raman spectroscopy has the best lateral resolution (≈5 μm) and is the fastest method (≈5 min).  相似文献   


20.
Single phase TiN and AlN films were prepared on a Si wafer from titanium tetra-etoxide and aluminum tri-butoxide solutions dissolved in ethanol and toluene, respectively, using an Ar/N2/H2 radio-frequency (r.f.) inductive thermal plasma chemical vapor deposition (CVD) method. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, measurement of electrical resistivity and Vickers microhardness. Factors affecting the formation of the films (lattice parameter, chemical composition, oxygen/carbon content, and deposition rate of the films) were examined in terms of the N2 flow rate (2.5–4.5 slm), substrate temperature (300–700°C), feed rate of the solution (0.025–0.3 ml/min), and the mole ratio of the alkoxide solution (1:1–1:3). The optimum conditions for preparation of TiN films produced a film 0.2–3 μm thick with an oxygen content of 8 at.% and a free carbon content of 4 at.%, showing an electrical resistivity of 370 μΩ cm. The optimum conditions for AlN films produced a film 0.3 μm thick containing 14 at.% oxygen and 8 wt.% carbon. The deposition rate of the TiN film was determined to be 30–35 nm/min. The Vickers microhardness of the TiN and AlN films was found to be 10±1 and 13±3 GPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号