首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
本文在分析火花点火发动机湍流涡结构及缸内湍流特性参数的基础上,提出了适用于火花点火发动机燃烧计算的准维湍流卷吸模型,通过建立相应的子模型及求解方程,实现了燃烧过程的计算;对压缩比为10的紧凑型燃烧室,在改变发动机转速、负荷、空燃比以及点火正时的情况下,计算得到的压力示功图、质量燃烧率等与实测值一致,从而证实了该模型的合理性。  相似文献   

2.
本文在分析火花点火发动机湍流涡结构及缸内湍流特性参数的基础上,提出了适用于火花点火发动机燃烧计算的准维湍流卷吸模型,通过建立相应的子模型及求解方程,实现了燃烧过程的计算;对压缩比为10的紧型燃烧室,在改变发动机转速、负荷、空燃比以及点火正时的情况下,计算得到的压力示功图、质量率等与实测值一致,从而证实了该模型的合理性。  相似文献   

3.
本文介绍了火花点火发动机着火延迟期、燃烧持续期及NOx排放的数值计算方法,并结全准维湍流卷吸模型进行了数值计算。文中给出了准维模型的计算与试验结果,并分析计算了若干发动机运行参数对着火延迟期、燃烧持续期及NOx排放和平均指示压力的影响。结果表明,根据准维模型建立的着火延迟期、燃烧持续期及NOx排放计算式有较清晰的物理意义,对分析、理解火花点火发动机燃烧与排放形成有一定的参考价值。  相似文献   

4.
简化自燃模型在发动机爆震预测中的应用   总被引:1,自引:0,他引:1  
提出一种用于汽油机爆震预测的简化自燃模型,该模型由13 种成分、20 个反应组成。首先在快速压缩机上对模型进行验证,考察模型对反应参数的敏感性,然后将其并入准维湍流燃烧模型中进行爆震预测,预测通过改变发动机的压缩比实现。在提高实际压缩比以后预测到爆震的发生。计算还表明爆震不仅与压缩机比还与燃烧室结构有关。  相似文献   

5.
利用快速压缩膨胀机对火花点火LPG发动机的燃烧过程进行了模拟与测量,分析了混合气浓度,点火提前角,压缩比以及燃烧室形状等对LPG燃烧过程的影响,可供汽油机改装成汽油/LPG双燃料发动机的参考。  相似文献   

6.
提出一种用于汽油机爆震预测听简化自燃模型,该模型由13种嘏分、20个反应组成。首先在快速压缩机上对模型进行验证,考察模型对反应参数的敏感性,然后将其并入准维湍流燃烧模型中者震预测,预测通过发迹发动机在压缩比实现,在提高实际压缩比以以爆遥发生。计算还表明爆震不仅与压缩机比还与燃烧室结构有关。  相似文献   

7.
本文在KIVA-Ⅱ程序中实现了由作者提出了一个新的相关火焰模型。该模型的火焰面积密度的毁灭项中,从分形几何的角度出发引入了湍流的作用。通过对工质为丙烷的火花点火发动机进行的变工况计算,对新模型与Boudier的燃烧模型进行了对比。结果表明,新模型合理地考虑了湍流的作用,计算结果与实验值吻合更好。  相似文献   

8.
火花点火发动机燃烧循环变动的理论研究   总被引:1,自引:0,他引:1  
沈惠贤  刘亮 《内燃机学报》1997,15(4):441-450
本文改进了一个火花点火发动机的准维计算模型,并对燃烧的循环变动进行了理论计算研究。这个模型包括点火时刻火花塞附近气流平均速度、湍流强度、气缸内残余废气系数以及缸内总的混合气质量等的循环变动的影响。将计算结果和试验结果进行了比较,证实了用这个模型可以较精确地预测燃烧的循环变动。另外,运用这个模型分别讨论了湍流强度、火焰中心位置在缸内的移动,以及残余废气系数的循环变动对不同燃烧阶段循环变动的影响程度,从而得出了一些有益的结论。  相似文献   

9.
以经过改装的火花点火式发动机作为研究对象,首先进行不考虑燃烧室声场影响的内燃机燃烧三维模型燃烧模拟,并将模拟结果同燃烧过程高速摄影结果比较分析;然后进行燃烧室声激励下的压力场研究和考虑燃烧室声场影响的准维模型的燃烧模拟计算。不考虑燃烧室声学影响的燃烧模拟结果与实际的燃烧试验结果存在较大的差异;闭式燃烧室内考虑声学影响时,由于燃烧激励使得燃烧室的压力场存在着波动。结果表明,燃烧室的声学特性对燃烧过程中压力的变化存在显著的影响。  相似文献   

10.
点燃式发动机燃烧过程模拟分析及临界爆震预测   总被引:1,自引:0,他引:1  
建立了火花点火式发动机的双区燃烧模型,其中包括化学动力学模型和湍流火焰燃烧模型.改进的双区燃烧模型中,区别于以往的绝热模型,考虑了已燃区向未燃区的传热.该模型通过模拟火花点火式发动机的燃烧过程,尝试性地进行了临界爆震预测和爆震分析工作.模型的计算结果与实验结果吻合得较好,验证了该模型分析的可行性.  相似文献   

11.
火花点火式发动机燃用变组分煤层气的燃烧模型研究   总被引:5,自引:0,他引:5  
本文对经改装成火花点火式的S195柴油机燃用变组分煤层气的燃烧模型进行了研究。以MATLAB程序设计语言为基本应用平台,建立了缸内燃烧过程的变步长双区准维模型,并与试验结果进行了比较分析,同时分析了组分变化对燃烧过程的影响。结果表明,本文所建立的模型是合理的,能较好地反映缸内的实际工作过程。  相似文献   

12.
结合燃烧模型,湍流火焰传播模型以及化学动力学模型,建立了摩托车四冲程汽油机双区准维燃烧模型。运用该模型模拟燃烧过程,并进行爆燃预测。用此模型CUB100摩托车汽油机进行了计算,预测了CUB100提高压缩比后爆燃的发生。  相似文献   

13.
The work reported here pertains to some of the computer simulation models developed for hydrogen fueled spark ignition (SI) engines. The engine combustion process is modeled by using a semi-empirical turbulent flame speed expression. This combustion model has been employed to account for the hydrogen-air combustion process over a wide range of stoichiometric variables for the Varimax engine operating at various speeds and compression ratios. Based on the computed results, graphs showing the variation of combustion crank angle and flame speed with fuel-air equivalence ratio, engine speed, compression ratio etc., have been plotted.  相似文献   

14.
The current work investigates a coke oven gas fueled spark ignition (SI) engine from the perspective of the first and second laws in order to understand the energy conversion performance of fuels and achieve highly efficient utilization. A detailed energy and exergy analysis is applied to a quasi-dimensional two-zone spark ignition engine model which combines turbulence flame propagation speed model at 1500 rpm by changing gas fuel types, compression ratio, load and ignition timing. It was found that the irreversibility of methane is the maximum and that of syngas is the minimum among the three different fuels. The irreversibility in the combustion process of a coke oven gas fueled SI engine is reduced when the compression ratio or the throttle valve opening angle is increased and the ignition timing is delayed. Increasing the compression ratio and delaying the ignition timing can improve the first and second law efficiency and reduce the brake specific fuel consumption (BSFC). The power performance and fuel economy are good and the energy is also used effectively when the compression ratio is 11, the throttle angle is 90% and the ignition time is ?10° CA ATDC respectively.  相似文献   

15.
Knocking combustion research is crucially important because it determines engine durability, fuel consumption, and power density, as well as noise and emission performance. Current spark ignition (SI) engines suffer from both conventional knock and super-knock. Conventional knock limits raising the compression ratio to improve thermal efficiency due to end-gas auto-ignition, while super-knock limits the desired boost to improve the power density of modern gasoline engines due to detonation. Conventional combustion has been widely studied for many years. Although the basic characteristics are clear, the correlation between the knock index and fuel chemistry, pressure oscillations and heat transfer, and auto-ignition front propagation, are still in early stages of understanding. Super-knock combustion in highly boosted spark ignition engines with random pre-ignition events has been intensively studied in the past decade in both academia and industry. These works have mainly focused on the relationship between pre-ignition and super-knock, source analyses of pre-ignition, and the effects of oil/fuel properties on super-knock. The mechanism of super-knock has been recently revealed in rapid compression machines (RCM) under engine-like conditions. It was found that detonation can occur in modern internal combustion engines under high energy density conditions. Thermodynamic conditions and shock waves influence the combustion wave and detonation initiation modes. Three combustion wave modes in the end gas have been visualized as deflagration, sequential auto-ignition and detonation. The most frequently observed detonation initiation mode is shock wave reflection-induced detonation (SWRID). Compared to the effect of shock compression and negative temperature coefficient (NTC) combustion on ignition delay, shock wave reflection is the main cause of near-wall auto-ignition/detonation. Finally, suppression methods for conventional knock and super-knock in SI engines are reviewed, including use of exhaust gas recirculation (EGR), the injection strategy, and the integration of a high tumble - high EGR-Atkinson/Miller cycle. This paper provides deep insights into the processes occurring during knocking combustion in spark ignition engines. Furthermore, knock control strategies and combustion wave modes are summarized, and future research directions, such as turbulence-shock-reaction interaction theory, detonation suppression and utilization, and super-knock solutions, are also discussed.  相似文献   

16.
We investigate how ignition through laser-induced plasma can improve the application of lean combustion, in particular in environmental conditions relevant to hydrogen internal combustion engines (ICE). Major design goals when developing combustion engines are increasing thermal efficiency and decreasing combustion emissions. High compression ratios, lean combustion and precise ignition timings are contributing factors in ICE optimization. In our studies, several gains from laser spark ignition are investigated. The high energy content of laser-induced ignition kernels are shown to speed up the development of the early flame kernels. These extended ignition kernels transfer into self propagating flames even in lean mixtures. Leaner mixtures are ignited in our experiments using laser spark ignition in comparison to conventional electrical spark plugs. Precise ignition timing is realized. Multi-point ignitions are synchronized on the timescale of microseconds to enhance the progress of combustion. We modified the locus of ignition in a mixture flow to decrease the temporal extent of flame contact with the wall. Therefore, burning duration and heat loss can be reduced.  相似文献   

17.
二甲醚(DME)在压燃式发动机上应用研究的新进展   总被引:7,自引:0,他引:7  
大量的研究表明二甲醚(DME)是压燃式发动机的一种较为理想的代用清洁燃料,本文介绍了迄今为止DME在压燃式发动机上应用研究的最新进展。研究人员借助各种先进手段对DME的热物性和喷雾、燃烧特性进行了深入的研究,从理论上探讨了DME的燃烧过程及其能实现超低排放的机理,试验研究了发动机在不同工况下的各项性能指标。在此基础上一些国家开发出了新型的DME燃料供给和喷射系统,并成功应用在车辆上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号