首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Fibronectin is a dimeric adhesion molecule that consists of three types of repeating modules. Adherent cells bind soluble fibronectin and incorporate it into insoluble fibrils in the extracellular matrix. The amino-terminal 70-kDa portion of fibronectin mediates binding to the cell surface, but amino-terminal fragments do not accumulate in the extracellular matrix. The ninth type I and first type III modules, the cell adhesion region, and the cysteines that form the interchain disulfide bonds have also been implicated in matrix assembly. To further define which regions of fibronectin are essential for matrix assembly, we generated a dimeric protein (d70 kDa) in which the 70-kDa amino terminus is directly linked to the last 51 amino acids of fibronectin, which contain the cysteines involved in interchain disulfide bonding. d70 kDa bound to cells and accumulated in the extracellular matrix. Incorporation of d70 kDa into the extracellular matrix was dependent upon protein synthesis; in cycloheximide-treated cultures that lacked a pre-existing matrix, d70 kDa accumulated in the extracellular matrix only in the presence of intact fibronectin. Monomeric 70-kDa protein was not incorporated into the matrix in the presence or absence of cycloheximide. These data indicate that fibronectin molecules containing only the amino-terminal 70-kDa region and the carboxyl-terminal 51 amino acids can become assembled into the extracellular matrix.  相似文献   

2.
Many factors influence the assembly of fibronectin into an insoluble fibrillar extracellular matrix. Previous work demonstrated that one component in serum that promotes the assembly of fibronectin is lysophosphatidic acid (Zhang, Q., W.J. Checovich, D.M. Peters, R.M. Albrecht, and D.F. Mosher. 1994. J. Cell Biol. 127:1447-1459). Here we show that C3 transferase, an inhibitor of the low molecular weight GTP-binding protein Rho, blocks the binding of fibronectin and the 70-kD NH2-terminal fibronectin fragment to cells and blocks the assembly of fibronectin into matrix induced by serum or lysophosphatidic acid. Microinjection of recombinant, constitutively active Rho into quiescent Swiss 3T3 cells promotes fibronectin matrix assembly by the injected cells. Investigating the mechanism by which Rho promotes fibronectin polymerization, we have used C3 to determine whether integrin activation is involved. Under conditions where C3 decreases fibronectin assembly we have only detected small changes in the state of integrin activation. However, several inhibitors of cellular contractility, that differ in their mode of action, inhibit cell binding of fibronectin and the 70-kD NH2-terminal fibronectin fragment, decrease fibronectin incorporation into the deoxycholate insoluble matrix, and prevent fibronectin's assembly into fibrils on the cell surface. Because Rho stimulates contractility, these results suggest that Rho-mediated contractility promotes assembly of fibronectin into a fibrillar matrix. One mechanism by which contractility could enhance fibronectin assembly is by tension exposing cryptic self-assembly sites within fibronectin that is being stretched. Exploring this possibility, we have found a monoclonal antibody, L8, that stains fibronectin matrices differentially depending on the state of cell contractility. L8 was previously shown to inhibit fibronectin matrix assembly (Chernousov, M.A., A.I. Faerman, M.G. Frid, O.Y. Printseva, and V.E. Koteliansky. 1987. FEBS (Fed. Eur. Biochem. Soc.) Lett. 217:124-128). When it is used to stain normal cultures that are developing tension, it reveals a matrix indistinguishable from that revealed by polyclonal anti-fibronectin antibodies. However, the staining of fibronectin matrices by L8 is reduced relative to the polyclonal antibody when the contractility of cells is inhibited by C3. We have investigated the consequences of mechanically stretching fibronectin in the absence of cells. Applying a 30-35% stretch to immobilized fibronectin induced binding of soluble fibronectin, 70-kD fibronectin fragment, and L8 monoclonal antibody. Together, these results provide evidence that self-assembly sites within fibronectin are exposed by tension.  相似文献   

3.
Incubation of cultured human fibroblasts with blood coagulation factor XIIIa (plasma transglutaminase, fibrinoligase) and the fluorescent primary amine, N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulfonamide, resulted in fluorescent labeling of three cellular polypeptides. The molecular weights of the labeled polypeptides, estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction, were: greater than 1.2-10(6), 2.2-10(5), and 1.3-10(5). The labeled 2.2-10(5) dalton polypeptide was susceptible to mild trypsinization and not present in cultures of SV-40 transformed fibroblasts, indicating that it is the subunit of cell-surface fibronectin and identical with the external transformation-sensitive polypeptide of similar molecular weight described by others. Upon coelectrophoresis, the labeled 2.2-10(5) dalton polypeptide migrated slightly behind the subunit of plasma fibronectin (cold-insoluble globulin), indicating that the immunologically cross-reactive forms of fibronectin in human plasma and cultured human fibroblasts differ slightly in molecular weight. The identities of the labeled greater than 1.2-10(6) and 1.3-10(5) dalton polypeptides are not known. The XIIa-reactive glutamine residues of fibroblast cell-surface proteins are potential sites for intermolecular cross-linking (by xi-(gamma-glutamyl)lysyl linkages) to other proteins of connective tissue.  相似文献   

4.
We previously reported that a macrophage response that increased binding to 125I-radiolabeled soluble denatured collagen (gelatin) was induced by preincubation of macrophage with a 70-kDa amino-terminal fibronectin fragment and soluble nonlabeled gelatin [S. F. Penc, F. A. Blumenstock, J. E. Kaplan (1995) J. Leukoc. Biol. 58, 501-509]. We now report that neither protein synthesis nor recycling of receptors between the cell surface and interior were required for this response. However, removal of cell surface components with trypsin demonstrated that induced gelatin binding required native cell surface constituents. It was found that in the presence of the 70-kDa fibronectin fragment and gelatin, matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) activity in the cell layers was significantly decreased or undetectable, respectively. Similar levels of increased gelatin binding could be reproduced after inhibition of matrix-degrading metalloprotease activity with 1'10-phenanthroline. These results demonstrate that a macrophage specific response that decreased gelatinase activity and increased gelatin binding was initiated by interaction with a 70-kDa fibronectin fragment and gelatin.  相似文献   

5.
Lysophosphatidic acid is a product of activated platelets and has diverse actions on cells. We have characterized the effect of lysophosphatidic acid on cell-mediated binding and assembly of fibronectin, an extracellular matrix protein. Serum made from whole blood, but neither platelet-poor plasma nor serum made from platelet-poor plasma, caused enhanced binding of fibronectin to cultured fibroblastic cells. The ability of whole blood serum to enhance binding of fibronectin was abolished by phospholipase B. These results indicate that lysophosphatidic acid derived from platelets is the principal component in whole blood serum that is active in the fibronectin binding assay. 1-oleoyl lysophosphatidic acid, 20-200 nM, was as active as 0.1-0.2% whole blood serum. The stimulatory effect of lysophosphatidic acid on the binding of fibronectin or the amino-terminal 70-kD fragment of fibronectin was rapid, sustained, and lost upon removal of lysophosphatidic acid. The stimulatory effect on binding could not be duplicated by bradykinin, platelet-activating factor, bombesin, or a peptide agonist of the thrombin receptor. Enhanced binding of the 70-kD fragment was due to increases in both the number and affinity of binding sites. Enhanced binding and assembly of fibronectin correlated with changes in cell shape and actin-containing cytoskeleton. The binding sites for fibronectin on lysophosphatidic acid-stimulated cells, as assessed by fluorescence, video, and scanning electron microscopy, were on areas of cell membrane containing numerous filopodia that extended between cells or between cells and substratum. These observations suggest that lysophosphatidic acid functions as a powerful and specific modulator of cell shape and early matrix assembly during wound healing.  相似文献   

6.
The regulation of vascular smooth muscle cell (VSMC) proliferation by the fibronectin matrix was tested by treating human umbilical artery smooth muscle cells (HUASMCs) with a recombinant fragment of fibronectin (protein III1-C) that has previously been shown to modulate fibronectin matrix assembly. III1-C inhibited HUASMC proliferation by 75% to 90%. The inhibition of growth was time dependent; III1-C had no effect on DNA synthesis after 0 to 5 hours of treatment but did have an effect at 24 hours and beyond. III1-C did not stimulate apoptosis in these cells, indicating that the inhibition of proliferation was not due to an induction of programmed cell death. The effects of III1-C on cell growth were only specific for normal diploid smooth muscle cells. III1-C had no effect on the proliferation of IMR-90 fibroblasts, endothelial cells, NIH 3T3 cells, or the rat aortic smooth muscle cell line A7r5. However, III1-C did inhibit proliferation by primary rat aortic smooth muscle cells. An analysis of HUASMC fibronectin receptor (integrin alpha5beta1) distribution revealed that III1-C did not inhibit alpha5beta1 localization to focal contacts. Moreover, III1-C had no effect on the relative expression levels of seven different integrin subunits on HUASMCs. However, III1-C did inhibit fibronectin matrix assembly by rat aortic smooth muscle cells, HUASMCs, A7r5 cells, IMR-90 cells, and endothelial cells. An analysis of fibronectin synthesis indicated that the inhibition of fibronectin matrix assembly by III1-C was not due solely to a decrease in fibronectin synthesis. Finally, treatment of HUASMCs with anti-fibronectin monoclonal antibody L8 (which is known to inhibit fibronectin matrix assembly) also decreased the rate of HUASMC DNA synthesis. These results demonstrate that III1-C inhibits VSMC proliferation and suggest that this effect may be mediated by the inhibition of fibronectin matrix assembly.  相似文献   

7.
beta1-null GD25 fibroblasts adherent to vitronectin fail to bind the N-terminal 70-kDa matrix assembly domain of fibronectin or to assemble fibronectin (Sakai, T., Zhang, Q., F?ssler, R., and Mosher, D. F. (1998) J. Cell Biol. 141, 527-538). We have made four observations that extend this finding. First, the presence of vitronectin on a substrate that otherwise can support fibronectin assembly has a dominant-negative effect on assembly. Second, the dominant-negative effect is lost when active beta1A is expressed. Third, beta1A containing the extracellular D130A inactivating mutation has a dominant-negative effect on fibronectin assembly. Fourth, beta1-null cells adherent to vitronectin are flat and lack filopodia, whereas beta1-null cells adherent to fibronectin or beta1A-expressing cells adherent to either vitronectin or fibronectin are contracted and exhibit numerous filopodia. These results reveal, therefore, that GD25 cells adherent to vitronectin can only assume a shape suitable for assembly of fibronectin when there is a countervailing signal from functional beta1-integrins.  相似文献   

8.
alpha7 beta1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the alpha7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with alpha7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the alpha7 beta1. alpha7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of alpha7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the alpha5 beta1 fibronectin receptor. Although cell surface expression of alpha5 beta1 was reduced by a factor of 20-25% in alpha7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of 125I-fibronectin for its surface receptor was decreased by 50% in alpha7 transfectants, indicating that the alpha5 beta1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+ restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in alpha7 transfectants. These data indicate that alpha7 expression leads to the functional down regulation of alpha5beta1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of a negative cooperativity between alpha7 and alpha5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

9.
The tissue-type plasminogen activator (t-PA) has been found to bind reversibly to human fibronectin (Fn). To locate the binding site on Fn for t-PA, the Fn was degraded with N-tosyl-L-phenylalanyl chloromethyl ketone-treated trypsin, and the resulting fragments were monitored by the enzyme-linked immunosorbent assay method for t-PA binding activities. A 20-kDa fragment with t-PA binding activity was identified, separated, and purified. It was subjected to further degradation with Staphylococcus aureus proteinase V8. An active 10-kDa fragment was finally purified by reverse-phase high pressure liquid chromatography on a C3 column. The dissociation constants of the binding of Fn and the 10-kDa fragment to t-PA were estimated by Scatchard plot to be 1.13 x 10(-8) and 2.08 x 10(-8) M, respectively. The 10-kDa fragment was sequenced and proved to be located at the 8-9th domains of type I homology of Fn. Based on the structural analysis of the 8-9th domains, a heptadecapeptide corresponding to the sequence Thr535-Glyl551 of Fn, which resided at the large disulfide loop of domain (I-9), was designed and synthesized. Both the 10-kDa fragment and the synthetic peptide could competitively inhibit the binding of Fn to t-PA. The synthetic peptide showed about one-tenth of the binding activity of Fn to t-PA with a dissociation constant of 1.35 x 10(-7) M and was proved to be the binding region of Fn for t-PA. In addition, like the intact Fn, both the 10-kDa fragment and the synthetic peptide could remarkably enhance the amidolytic activity of t-PA in a dose-dependent manner, as shown by using S-2288 as a chromogenic substrate.  相似文献   

10.
Affinity cross-linking of membrane bound 125I-interleukin-6 (IL-6) on several cell lines revealed a three-band pattern of IL-6-containing cross-linked complexes with molecular masses of 100, 120, and 150 kDa. To identify the membrane components that were associated with IL-6 in the three complexes, we employed the Denny-Jaffe reagent, a heterobifunctional, cleavable cross-linker that allows the transfer of 125I from the ligand to its receptor. Samples cross-linked with Denny-Jaffe reagent were analyzed by two-dimensional SDS-polyacrylamide gel electrophoresis in which the cross-linker was cleaved prior to the second dimension. This analysis revealed that IL-6 directly associates with a 130-kDa membrane protein thus allowing the formation of the 150-kDa complex. In addition, both the 100- and 120-kDa cross-linked complexes were shown to include an 80-kDa membrane glycoprotein associated with one and two IL-6 molecules, respectively.  相似文献   

11.
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. Both intact extracellular matrix molecules and their degradative products may exhibit these activities. We have found that human lung fibroblasts produce paracrine motility-stimulating factors for recently established human sarcoma cell strains. We purified the major fibroblast motility-stimulating factor (FMSF) from human lung fibroblast-conditioned medium by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse-phase high-pressure liquid chromatography identified FMSF as an NH2-terminal fragment of human fibronectin. Using SYN-1 sarcoma cells, FMSF predominantly stimulated chemotaxis and some chemokinesis, and it was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma, and neurofibrosarcoma cells. The FMSF activity present in human lung fibroblast-conditioned medium was completely eliminated by either neutralization or immunodepletion with a rabbit antihuman-fibronectin antibody, thus further confirming that the NH2-terminal fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Because human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), and lung-derived fibroblasts secrete large amounts of FMSF, FMSF and fibronectin may play a role in stimulating sarcoma invasion into lung tissue.  相似文献   

12.
13.
In order to characterize regions of the insulin receptor that are essential for ligand binding and possibly identify a smaller insulin-binding fragment of the receptor, we have used site-directed mutagenesis to construct a series of insulin receptor deletion mutants. From 112 to 246 amino acids were deleted from the alpha-subunit region comprising amino acids 469-729. The receptor constructs were expressed as soluble insulin receptor IgG fusion proteins in baby hamster kidney cells and were characterized in binding assays by immunoblotting and chemical cross-linking with radiolabeled insulin. The shortest receptor fragment identified was a free monomeric alpha-subunit deleted of amino acids 469-703 and 718-729 (exon 11); the mass of this receptor fragment was found by mass spectrometry to be 70 kDa. This small insulin receptor fragment bound insulin with an affinity (Kd) of 4.4 nM, which is similar to what was found for the full-length ectodomain of the insulin receptor (5.0 nM). Cross-linking experiments confirmed that the 70-kDa receptor fragment specifically bound insulin. In summary we have minimized the insulin binding domain of the insulin receptor by identifying a 70-kDa fragment of the ectodomain that retains insulin binding affinity making this an interesting candidate for detailed structural analysis.  相似文献   

14.
Band shift and UV cross-linking assays were used to analyze the major single-stranded DNA (ssDNA) binding activity in lysates of primate and rodent cells. The ssDNA binding activity behaved chromatographically similar to that of replication protein A (RP-A), a multisubunit protein containing three polypeptides of molecular mass 70, 34, and 14 kDa. A 70-kDa protein was found to harbor the ssDNA binding activity when UV cross-linked to long ssDNA or to oligonucleotide probes. Monoclonal antibodies against the 70- and the 34-kDa subunits produced super-gel-shift patterns, demonstrating that the reactive protein is indeed RP-A and that the retarded native binding complex included both subunits. RP-A displayed oligonucleotide-specific binding dependent on oligomer length. Increasing oligonucleotide length led to the formation of slow migrating complexes harboring multiple RP-A molecules, suggesting that an interval of about 20-30 bases is required for the binding of RP-A molecules. While similar binding activity was detected in cell extracts derived from proliferating and quiescent cells, a sharp decline in ssDNA binding activity was observed in the SV40-transformed Chinese hamster cell line 631 following UV irradiation. The nature of this decrease in activity and its possible effect on DNA replication is discussed.  相似文献   

15.
The first type III module of fibronectin (Fn) contains a cryptic site that binds Fn and its N-terminal 29 kDa fragment and is thought to be important for fibril formation (Morla, A., Zhang, Z., and Ruoslahti, E. (1994) Nature 367, 193-196; Hocking, D. C., Sottile, J. , and McKeown-Longo, P. J. (1994) J. Biol. Chem. 269, 19183-19191). A synthetic 31-mer peptide (NAPQ ... TIPG) derived from the middle of domain III1 was also shown to bind Fn, but the site of its interaction was not determined (Morla, A., and Ruoslahti, E. (1992) J. Cell Biol. 118, 421-429). By affinity chromatography on peptide-agarose, we tested a set of fragments representing the entire light chain of plasma Fn. Only 40-kDa Hep-2 (III12-15) failed to bind. The concentration of urea required for peak elution of Fn and the other fragments decreased in the order Fn > 42-kDa GBF (I6II1-2I7-9) > 19-kDa Fib-2 (I10-12) > 110-kDa CBF(III2-10) > 29-kDa Fib-1 (I1-I5). Neither Fn nor any of the fragments bound immobilized intact III1, confirming the cryptic nature of this activity. In an effort to detect interactions between other Fn domains, all fragments were coupled to Sepharose, and each fragment was tested on each affinity matrix before and after denaturation. The only interaction detected was that of fluid phase III1 with immobilized denatured 110-kDa CBF and 40-kDa Hep-2, both of which contain type III domains. Analysis of subfragments revealed this activity to be dominated by domains III7 and III15. Fn itself did not bind to the denatured fragments. Thus, domain III1 contains two cryptic "self-association sites," one that is buried in the core of the fold but recognizes many Fn fragments when presented as a peptide and another that is concealed in Fn but exposed in the native isolated domain and recognizes cryptic sites in two other type III domains. These interactions between type III domains could play an important role in assembly of Fn multimers in the extracellular matrix.  相似文献   

16.
The human cytomegalovirus (HCMV) gCIII envelope complex is composed of glycoprotein H (gH; gpUL75), glycoprotein L (gL; gpUL115), and a third, 125-kDa protein not related to gH or gL (M. T. Huber and T. Compton, J. Virol. 71:5391-5398, 1997; L. Li, J. A. Nelson, and W. J. Britt, J. Virol. 71:3090-3097, 1997). Glycosidase digestion analysis demonstrated that the 125-kDa protein was a glycoprotein containing ca. 60 kDa of N-linked oligosaccharides on a peptide backbone of 65 kDa or less. Based on these biochemical characteristics, two HCMV open reading frames, UL74 and TRL/IRL12, were identified as candidate genes for the 125-kDa glycoprotein. To identify the gene encoding the 125-kDa glycoprotein, we purified the gCIII complex, separated the components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and subjected gH and the 125-kDa glycoprotein to amino acid microsequence analysis. Microsequencing of an internal peptide derived from purified 125-kDa glycoprotein yielded the amino acid sequence LYVGPTK. A FASTA search revealed an exact match of this sequence to amino acids 188 to 195 of the predicted product of the candidate gene UL74, which we have designated glycoprotein O (gO). Anti-gO antibodies reacted in immunoblots with a protein species migrating at ca. 100 to 125 kDa in lysates of HCMV-infected cells and with 100- and 125-kDa protein species in purified virions. Anti-gO antibodies also immunoprecipitated the gCIII complex and recognized the 125-kDa glycoprotein component of the gCIII complex. Positional homologs of the UL74 gene were found in other betaherpesviruses, and comparisons of the predicted products of the UL74 homolog genes demonstrated a number of conserved biochemical features.  相似文献   

17.
Entry of group A streptococcus (GAS) into cells has been suggested as an important trait in GAS pathogenicity. Protein F1, a fibronectin (Fn) binding protein, mediates GAS adherence to cells and the extracellular matrix, and efficient cell internalization. We demonstrate that the cellular receptors responsible for protein F1-mediated internalization of GAS are integrins capable of Fn binding. In HeLa cells, bacterial entry is blocked by anti-beta1 integrin monoclonal antibody. In the mouse cell line GD25, a beta1 null mutant, the alphavbeta3 integrin promotes GAS entry. Internalization of these cells by GAS is blocked by a peptide that specifically binds to alphavbeta3 integrin. In both cell lines, entry of GAS requires the occupancy of protein F1 by Fn. Neither the 29 kDa nor the 70 kDa N-terminal fragments or the 120 kDa cell-binding fragment of Fn promote bacterial entry. Fn-coated beads are taken up efficiently by HeLa cells. Both the entry of GAS via protein F1 and the uptake of Fn-coated beads are blocked by anti-beta1 antibody but are unaffected by a large excess of soluble Fn. Internalization of HeLa cells by bacteria bearing increasing amounts of prebound Fn to protein F1 reveals a sigmoidal ultrasensitive curve. These suggest that the ability of particles to interact via Fn with multiple integrin sites plays a central role in their ability to enter cells.  相似文献   

18.
The extracellular matrix protein fibronectin was found to be secreted by three polarized epithelial cell lines Madin-Darby canine kidney (MDCK), Caco-2 and LLC-PK1. About 54 and 46% of fibronectin was secreted from the apical and basolateral cell surfaces, respectively, in MDCK cells. In Caco-2 and LLC-PK1 cells, the majority (about 92-93%) of fibronectin secretion occurs from the basolateral cell surface, with the remaining 7-8% from the apical surface. In all three cell types, NH4Cl was found to inhibit basolateral secretion (resulting in enhanced apical secretion), while total fibronectin secretion was not significantly affected (although a delay in secretion was observed). Nocodazole reduced total fibronectin secretion to about 70% of control levels in MDCK and Caco-2 cells, with significant inhibition on secretion from both surfaces. In contrast, total fibronectin secretion was enhanced by nocodazole in LLC-PK1 cells. Furthermore, the majority of fibronectin secretion was redirected to the apical cell surface in LLC-PK1 cells. These observations demonstrate that the nature as well as the extent of the effects of NH4-Cl and nocodazole on polarized fibronectin secretion varies amongst different epithelial cell types.  相似文献   

19.
A 14K beta-galactoside-binding lectin (galectin-1) is present in many animal tissues. In a search for endogenous ligands, we surveyed galectin-1-binding proteins in human placenta. Extract of human placenta with 2 M urea was applied to a Sepharose 4B column conjugated with galectin-1 purified from frog (Rana catesbeiana) eggs. Two major proteins eluted with 100 mM lactose from the column-bound fraction showed apparent molecular masses of 220 and 180 kDa on SDS-PAGE under reducing conditions. Western blotting analysis using monoclonal antibodies indicated that these proteins were fibronectin and laminin, respectively. Most placental and amniotic fibronectins bound strongly to the column, whereas almost all plasma fibronectin passed through the column. The galectin-1, fibronectin and laminin were immunohistochemically shown to be co-localized in the extracellular matrix of placental tissue. In a cell attachment assay, rhabdosarcoma cells adhered to a plate coated with placental fibronectin, even in the presence of GRGDS peptide, if galectin-1 were also present. This adhesive effect of galectin-1 was inhibited by lactose. These results indicate that tissue fibronectin, as well as laminin, serve as endogenous ligands for galectin-1, suggesting that galectin-1 may play a role in assembly of the extracellular matrix, or in the control of cell adhesion based on lectin-extracellular matrix interaction.  相似文献   

20.
BACKGROUND: Titin is a huge protein ( approximately 3 MDa) that is present in the contractile unit (sarcomere) of striated muscle and has a key role in muscle assembly and elasticity. Titin is mainly composed of two types of module (type I and II). Type I modules are found exclusively in the region of titin localised in the A band, where they are arranged in a super-repeat pattern that correlates with the ultrastructure of the thick filament. No structure of a titin type I module has been reported so far. RESULTS: We have determined the structure of a representative type I module, A71, using nuclear magnetic resonance (NMR) spectroscopy. The structure has the predicted fibronectin type III fold. Titin-specific conserved residues are either located at the putative module-module interfaces or along one side of the protein surface. Several proline residues that contribute to two stretches in a polyproline II helix conformation are solvent-exposed and line up as a continuous ribbon extending over more than two-thirds of the module surface. Homology models of the type I module N-terminal to A71 (A70) and the double module A70-A71 were used to discuss possible intermodule interactions and their role in module-module orientation. CONCLUSIONS: As residues at the module-module interfaces are highly conserved, we speculate that similar interactions govern all of the interfaces between type I modules in titin. This conservation would lead to a regular multiple array of similar surface structures. Such an arrangement would allow arrays of contiguous type I modules to expose multiple proline stretches in a highly regular way and these may act as binding sites for other thick filament proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号