首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte growth factor/scatter factor (HGF/SF) treatment of the Madin-Darby canine kidney epithelial cell line causes scattering of cells grown in monolayer culture and the formation of branching tubules by cells grown in collagen gels. HGF/SF causes prolonged activation of both the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 2 (ERK2) and the phosphoinositide 3-OH kinase (PI 3-kinase) target protein kinase B (PKB)/Akt; inhibition of either the MAP kinase pathway by the MAP kinase/ERK kinase inhibitor PD98059 or the PI 3-kinase pathway by LY294002 blocks HGF/SF induction of scattering, although in morphologically distinct ways. Expression of constitutively activated PI 3-kinase, Ras, or R-Ras will cause scattering, but activated Raf will not, indicating that activation of the MAP kinase pathway is not sufficient for this response. Downstream of PI 3-kinase, activated PKB/Akt and Rac are both unable to induce scattering, implicating a novel pathway. Scattering induced by Ras or PI 3-kinase is sensitive to PD98059, as well as to LY294002, suggesting that basal MAP kinase activity is required, but not sufficient, for the scattering response. Induction of MDCK cell tubulogenesis in collagen gels by HGF/SF is inhibited by PD98059; expression of activated Ras and Raf causes disorganized growth in this system, but activated PI 3-kinase or R-Ras causes branching tubule formation similar to that seen with HGF/SF treatment. These data indicate that multiple signaling pathways acting downstream of Met and Ras are needed for these morphological effects; scattering is induced primarily by the PI 3-kinase pathway, which acts through effectors other than PKB/Akt or Rac and requires at least basal MAP kinase function. Elevated PI 3-kinase activity induces tubulogenesis, but total inhibition and excess activation of the MAP kinase pathway both oppose this effect.  相似文献   

2.
We have examined the functional coupling of the human metabotropic glutamate receptor type 2 (mGluR2) with the regulation of the mitogen activated protein kinase (MAP kinase) signal transduction cascade. We demonstrated that L-glutamate stimulation of the human mGluR2 receptor transiently expressed in chinese hamster ovary (CHO) cells leads to a rapid increase in the activity of p42/p44 MAP kinase (also known as the extracellular signal regulated kinases, ERK1 and ERK2). Activation of p42/p44 MAP kinase has been demonstrated in a peptide phosphorylation assay and through the demonstration of a shift in electrophoretic mobility of p42 MAP kinase following activation. In both assay systems L-glutamate stimulation of MAP kinase was inhibited by pertussis toxin and by the MEK (MAP/ERK activating kinase) inhibitor PD 98059. We conclude that L-glutamate stimulation of the mGluR2 receptor in CHO cells mediated regulation of p42/p44 MAP kinase following the activation of pertussis toxin-sensitive G alpha(i) G-proteins via a distinct protein kinase signalling pathway that utilizes MEK.  相似文献   

3.
PD98059, a specific inhibitor of MEK-1 mitogen-activated protein (MAP) kinase kinase, blocked Listeria monocytogenes invasion into HeLa epithelial cells. The effects of PD98059 were reversible, as adherent extracellular bacteria were internalized upon removal of the drug. Previously, we reported that L. monocytogenes could activate ERK-1 and ERK-2 MAP kinases through the action of listeriolysin O (LLO) on the host cell (P. Tang, I. Rosenshine, P. Cossart, and B. B. Finlay, Infect. Immun. 64:2359-2361, 1996). We have now found that two other MAP kinase pathways, those of p38 MAP kinase and c-Jun N-terminal kinase, are also activated by wild-type L. monocytogenes. Mutants lacking functional LLO (hly mutants) were still invasive but only activated ERK-2 and only activated it at later (90-min) postinfection times. Two inhibitors of L. monocytogenes invasion, cytochalasin D, which disrupts actin polymerization, and wortmannin, which blocks phosphatidylinositol (PI) 3-kinase activity, did not block ERK-2 activation by wild-type L. monocytogenes and hly mutants. However, genistein, an inhibitor of tyrosine kinases, and PD98059 both blocked invasion and decreased ERK-2 activation. These results suggest that MEK-1 and ERK-2 activities are essential for L. monocytogenes invasion into host epithelial cells. This is the first report to show that a MAP kinase pathway is required for bacterial invasion.  相似文献   

4.
An increasing body of evidence suggests that mitogen-induced activation of the RAF/ERK signaling pathway is functionally separate from the stress-induced activation of the SEK/JNK/p38 signaling pathway. In general, stress stimuli strongly activate the p38s and the JNKs while only weakly activating ERK1 and ERK2. However, a number of independent groups have now shown that the RAF/ERK signaling pathway is strongly activated by ionizing radiation. In this work, we examine this paradox. We show that both mitogen-activated protein (MAP) kinase kinase 1 (MEK1) and MAP kinase kinase 2 (MEK2) are activated by ionizing radiation. Blockage of this activation through the use of dominant negative MEK2 increases sensitivity of the cell to ionizing radiation and decreases the ability of a cell to recover from the G2/M cell cycle checkpoint arrest. Blocking MEK2 activation does not affect double-strand DNA break repair, however. Although MEK1 is activated to a lesser extent by ionizing radiation, expression of a dominant negative MEK1 does not affect radiation sensitivity of the cell, the G2/M checkpoint of the cell, or double-strand break repair. Because ionizing radiation leads to a different cell cycle arrest (G2/M arrest) than that typically seen with other stress stimuli, and because we have shown that MEK2 can affect G2/M checkpoint kinetics, these results provide an explanation for the observation that the MEKs can be strongly activated by ionizing radiation and only weakly activated by other stressful stimuli.  相似文献   

5.
Activation of the mitogen-activated protein (MAP) kinase pathway has been associated with both cell proliferation and differentiation. Constitutively activated forms of Mek (MAP kinase/Erk kinase) and Erk (MAP kinase) have been previously shown capable of inducing differentiation or proliferation in nonhematopoietic cells. To specifically examine the role of Erk activation in megakaryocytic growth and development, we activated the MAP kinase pathway by the transfection of constitutively activated Mek or Erk cDNA into a human megakaryoblastic cell line, CMK, by electroporation. The CMK transfectant clones that expressed constitutively activated Mek or Erk showed morphologic changes of differentiation. Transfected cells also showed expression of mature megakaryocytic cell surface markers. The MAP kinase pathway was also activated by treatment of the hematopoietic cells with a cytokine that activates Erk. The treatment of CMK cells with stem cell factor (SCF ) caused MAP kinase activation and induced differentiation by the expression of mature megakaryocytic cell surface markers. The effects of the SCF treatment were inhibited by pretreatment with a specific inhibitor of the MAP kinase pathway, PD98059. In this report, we conclude that activation of the MAP kinase pathway was both necessary and sufficient to induce differentiation in this megakaryoblastic cell line.  相似文献   

6.
The mitogen-activated protein kinase (MAP kinase) pathway is thought to play an important role in the actions of neurotrophins. A small molecule inhibitor of the upstream kinase activator of MAP kinase, MAP kinase kinase (MEK) was examined for its effect on the cellular action of nerve growth factor (NGF) in PC-12 pheochromocytoma cells. PD98059 selectively blocks the activity of MEK, inhibiting both the phosphorylation and activation of MAP kinases in vitro. Pretreatment of PC-12 cells with the compound completely blocked the 4-fold increase in MAP kinase activity produced by NGF. Half-maximal inhibition was observed at 2 microM PD98059, with maximal effects at 10-100 microM. The tyrosine phosphorylation of immunoprecipitated MAP kinase was also completely blocked by the compound. In contrast, the compound was without effect on NGF-dependent tyrosine phosphorylation of the pp140trk receptor or its substrate Shc and did not block NGF-dependent activation of phosphatidylinositol 3'-kinase. However, PD98059 completely blocked NGF-induced neurite formation in these cells without altering cell viability. These data indicate that the MAP kinase pathway is absolutely required for NGF-induced neuronal differentiation in PC-12 cells.  相似文献   

7.
p38 is a member of the mitogen-activated protein (MAP) kinase superfamily activated by stress signals and implicated in cellular processes involving inflammation and apoptosis. Unlike the extracellular signal-regulated kinases (p42 and p44 MAP kinases), which are stimulated by insulin in many cell types, p38 activity is inhibited by insulin in postmitotic fetal neurons for which insulin is a potent survival factor (Heidenreich, K. A., and Kummer, J. L. (1996) J. Biol. Chem. 271, 9891-9894). These data suggested that insulin's effects on neuronal survival are mediated by inhibition of a p38-mediated apoptotic pathway. To better understand the relationship between p38 activity and cell survival, we induced apoptosis in two cell lines and examined the ability of insulin or a specific p38 inhibitor (a pyridinyl imidazole compound PD169316) to block p38 activity and cell death. In Rat-1 fibroblasts grown in the presence of serum, p38 activity was undetectable by immune complex assays, and the number of apoptotic cells was very low (<0.5%). After the removal of serum for 16 h, p38 activity was markedly elevated, and apoptosis increased by 14-15-fold. Insulin (50 ng/ml) inhibited p38 activity by approximately 70% and blocked apoptosis by at least 80%. PD169316 also blocked p38 enzyme activity and apoptosis by approximately 80%. Similar results were obtained in differentiated PC12 cells that were deprived of nerve growth factor (NGF) for 16 h. In the presence of NGF, p38 activity and the number of apoptotic cells was very low (approximately 1.0%). After NGF withdrawal, p38 activity was selectively elevated and apoptosis increased to 15%. Both insulin and PD169316 markedly blocked the increase in p38 activity and apoptosis. The MAP kinase kinase inhibitor, PD98059, had no effect on apoptosis in Rat-1 fibroblasts and only partially blocked apoptosis in PC12 cells. PD98059 did not influence insulin's ability to block apoptosis, indicating that the extracellular signal-regulated kinase pathway does not mediate insulin's survival effects. These data further support the role of p38 in cellular apoptosis and support the hypothesis that insulin promotes cell survival, at least in part, by inhibiting the p38 pathway.  相似文献   

8.
Kinases mediating phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in intact cells remain to be fully characterized. Platelet-activating factor stimulation of human neutrophils increases cPLA2 phosphorylation. This increase is inhibited by PD 98059, a mitogen-activated protein (MAP)/extracellular signal-regulating kinase (erk) 1 inhibitor, but not by SB 203580, a p38 MAP kinase inhibitor, indicating that this action is mediated through activation of the p42 MAP kinase (erk2). However, platelet-activating factor-induced arachidonic acid release is inhibited by both PD 98059 and SB 203580. Stimulation by TNF-alpha increases cPLA2 phosphorylation, which is inhibited by SB 203580, but not PD 98059, suggesting a role for p38 MAP kinase. LPS increases cPLA2 phosphorylation and arachidonic acid release. However, neither of these actions is inhibited by either PD 98059 or SB 203580. PMA increases cPLA2 phosphorylation. This action is inhibited by PD 98059 but not SB 203580. Finally, FMLP increases cPLA2 phosphorylation and arachidonic acid release. Interestingly, while the FMLP-induced phosphorylation of cPLA2 is not affected by the inhibitors of the p38 MAP kinase or erk cascades, both inhibitors significantly decrease arachidonic acid release stimulated by FMLP. SB 203580 or PD 98059 has no inhibitory effects on the activity of coenzyme A-independent transacylase.  相似文献   

9.
We investigated cell proliferation modulated by cholecystokinin (CCK) and somatostatin analogue RC-160 in CHO cells bearing endogenous CCKA receptors and stably transfected by human subtype sst5 somatostatin receptor. CCK stimulated cell proliferation of CHO cells. This effect was suppressed by inhibitor of the soluble guanylate cyclase, LY 83583, the inhibitor of the cGMP dependent kinases, KT 5823, and the inhibitor of mitogen-activated protein (MAP) kinase kinase, PD 98059. CCK treatment induced an increase of intracellular cGMP concentrations, but concomitant addition of LY 83583 virtually suppressed this increase. CCK also activated both phosphorylation and activity of p42-MAP kinase; these effects were inhibited by KT 5823. All the effects of CCK depended on a pertussis toxin-dependent G protein. Somatostatin analogue RC-160 inhibited CCK-induced stimulation of cell proliferation but it did not potentiate the suppressive effect of the inhibitors LY 83583 and KT 5823. RC-160 inhibited both CCK-induced intracellular cGMP formation as well as activation of p42-MAP kinase phosphorylation and activity. This inhibitory effect was observed at doses of RC-160 similar to those necessary to occupy the sst5 recombinant receptor and to inhibit CCK-induced cell proliferation. We conclude that, in CHO cells, the proliferation and the MAP kinase signaling cascade depend on a cGMP-dependent pathway. These effects are positively regulated by CCK and negatively influenced by RC-160, interacting through CCKA and sst5 receptors, respectively. These studies provide a characterization of the antiproliferative signal mediated by sst5 receptor.  相似文献   

10.
11.
We have identified a novel mitogen- and stress-activated protein kinase (MSK1) that contains two protein kinase domains in a single polypeptide. MSK1 is activated in vitro by MAPK2/ERK2 or SAPK2/p38. Endogenous MSK1 is activated in 293 cells by either growth factor/phorbol ester stimulation, or by exposure to UV radiation, and oxidative and chemical stress. The activation of MSK1 by growth factors/phorbol esters is prevented by PD 98059, which suppresses activation of the MAPK cascade, while the activation of MSK1 by stress stimuli is prevented by SB 203580, a specific inhibitor of SAPK2/p38. In HeLa, PC12 and SK-N-MC cells, PD 98059 and SB 203580 are both required to suppress the activation of MSK1 by TNF, NGF and FGF, respectively, because these agonists activate both the MAPK/ERK and SAPK2/p38 cascades. MSK1 is localized in the nucleus of unstimulated or stimulated cells, and phosphorylates CREB at Ser133 with a Km value far lower than PKA, MAPKAP-K1(p90Rsk) and MAPKAP-K2. The effects of SB 203580, PD 98059 and Ro 318220 on agonist-induced activation of CREB and ATF1 in four cell-lines mirror the effects of these inhibitors on MSK1 activation, and exclude a role for MAPKAP-K1 and MAPKAP-K2/3 in this process. These findings, together with other observations, suggest that MSK1 may mediate the growth-factor and stress-induced activation of CREB.  相似文献   

12.
Activation of the Ras/Raf/mitogen-activated protein kinase kinase/mitogen-activated protein (MAP) kinase signaling cascade is initiated by activation of growth factor receptors and regulates many cellular events, including cell cycle control. Our previous studies suggested that the connexin-43 gap junction protein may be a target of activated MAP kinase and that MAP kinase may regulate connexin-43 function. We identified the sites of MAP kinase phosphorylation in in vitro studies as the consensus MAP kinase recognition sites in the cytoplasmic carboxyl tail of connexin-43, Ser255, Ser279, and Ser282. In this study, we demonstrate that activation of MAP kinase by ligand-induced activation of the epidermal growth factor (EGF) or lysophosphatidic acid receptors or by pervanadate-induced inhibition of tyrosine phosphatases results in increased phosphorylation on connexin-43. EGF and lysophosphatidic acid-induced phosphorylation on connexin-43 and the down-regulation of gap junctional communication in EGF-treated cells were blocked by a specific mitogen-activated protein kinase kinase inhibitor (PD98059) that prevented activation of MAP kinase. These studies confirm that connexin-43 is a MAP kinase substrate in vivo and that phosphorylation on Ser255, Ser279, and/or Ser282 initiates the down-regulation of gap junctional communication. Studies with connexin-43 mutants suggest that MAP kinase phosphorylation at one or more of the tandem Ser279/Ser282 sites is sufficient to disrupt gap junctional intercellular communication.  相似文献   

13.
Expression of oncogenic Ras in 23A2 skeletal myoblasts is sufficient to induce both a transformed phenotype and a differentiation-defective phenotype, but the signaling pathways activated by oncogenic Ras in these cells and their respective contribution to each phenotype have not been explored. In this study, we investigated MAP kinase activity in control 23A2 myoblasts and in 23A2 myoblasts rendered differentiation-defective by the stable expression of an oncogenic (G12V)Ha-ras gene (Ras9 cells). The MAP kinase immunoprecipitated from Ras9 cells was 30-40% more active than that from control 23A2 cells. To establish if this elevated MAP kinase activity is essential to the maintenance of the oncogenic Ras-induced phenotype, we utilized the selective MAP kinase kinase 1 (MEK1) inhibitor, PD 098059. PD 098059 decreased the MAP kinase activity in Ras9 cells to the level found in 23A2 cells. PD 098059 did not affect the ability of 23A2 myoblasts to differentiate. PD 098059 reverted the transformed morphology of Ras9 cells but did not restore the ability of these cells to express the muscle-specific myosin heavy chain gene or to form muscle fibers. Treatment with PD 098059 also did not affect the ability of oncogenic Ha-Ras to establish a non-myogenic phenotype in C3H10T1/2 cells co-expressing MyoD. These results demonstrate that the activation of MAP kinase is necessary for the transformed morphology of Ras9 cells but is not required by oncogenic Ras to establish or to maintain a differentiation-defective phenotype. While these data do not rule out the possibility that constitutive signaling by MEK1 or MAP kinase could inhibit myoblast differentiation, they clearly demonstrate that other pathways activated by oncogenic Ras are sufficient to inhibit differentiation.  相似文献   

14.
This communication describes an extracellular signal-regulated kinase kinase (MEK)-dependent signal transduction pathway that prevents the terminal differentiation of a hemopoietic cell line. Both PMA and the cell-permeable ceramide, C2-ceramide, caused differentiation of U937 cells, but with distinct cell morphology and CD11b/CD14 surface expression. While PMA activated extracellular signal-regulated kinase (ERK), a downstream kinase of Raf-MEK signaling, C2-ceramide activated c-Jun NH2-terminal kinase (JNK), an anchor kinase of stress-induced signaling. Furthermore, only C2-ceramide stimulated an induction of cell cycle arrest that was associated with stable expression of p21CIP1 and retinoblastoma nuclear phosphoprotein dephosphorylation. Expression of p21CIP1 and JNK activation were also observed in sphingosine-treated cells, whereas sphingosine did not induce detectable differentiation. Concomitant stimulation with C2-ceramide and PMA resulted in the PMA phenotype, and cell cycle arrest was absent. ERK activation was enhanced by C2-ceramide plus PMA stimulation, whereas the activation of JNK was aborted. Strikingly, the inhibition of MEK with PD98059 altered the phenotype of C2-ceramide- and PMA-stimulated U937 cells to that of cells treated with C2-ceramide alone. Thus, ERK and JNK pathways deliver distinct signals, and the ERK pathway is dominant to the JNK cascade. Furthermore, differentiation and cell cycle arrest caused by C2-ceramide rely on independent signaling pathways, and JNK is an unlikely signaling element for this differentiation. Importantly, during C2-ceramide and PMA costimulation, the JNK pathway is not simply blocked by ERK activation; rather, cross-talk between these MAP kinase pathways acts to simultaneously augment ERK activity and down-regulate JNK activity.  相似文献   

15.
Mitogen-activated protein (MAP) kinase cascades are major signaling systems by which cells transduce extracellular cues into intracellular responses. In general, MAP kinases are activated by phosphorylation on tyrosine and threonine residues and inactivated by dephosphorylation. Therefore, MAP kinase phosphatase-1 (MKP-1), a dual-specificity protein tyrosine phosphatase that exhibits catalytic activity toward both regulatory sites on MAP kinases, is suggested to be responsible for the downregulation of extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK), and p38 MAP kinase. In the present study, we examined the role of these MAP kinases in the induction of MKP-1 in vascular smooth muscle cells (VSMCs). Extracellular stimuli such as platelet-derived growth factor (PDGF), 12-O-tetradecanoylphorbol 13-acetate (TPA), and angiotensin II, which activated ERK but not SAPK/p38 MAP kinase, induced a transient induction of MKP-1 mRNA and its intracellular protein. In addition, PD 098059, an antagonist of MEK (MAP kinase/ERK kinase), the upstream kinase of ERK, significantly reduced the PDGF-induced activation of ERK and potently inhibited the expression of MKP-1 after stimulation with PDGF, thereby demonstrating the induction of MKP-1 in response to activation of the ERK signaling cascade. Furthermore, anisomycin, a potent stimulus of SAPK and p38 MAP kinase, also induced MKP-1 mRNA expression. This effect of anisomycin was significantly inhibited in the presence of the p38 MAP kinase antagonist SB 203580. These data suggest the induction of MKP-1, not only after stimulation of the cell growth promoting ERK pathway but also in response to activation of stress-responsive MAP kinase signaling cascades. We suggest that this pattern of MKP-1 induction may be a negative feedback mechanism in the control of MAP kinase activity in VSMCs.  相似文献   

16.
17.
We examined whether X radiation induces a particular deletion in the mitochondrial DNA (mtDNA) of the cells of two human squamous cell carcinoma lines with different sensitivity to radiation and in a radiosensitive ataxia telangiectasia (AT) cell line. We used polymerase chain reaction (PCR) to quantify the accumulation of a particular 4977-bp deletion (delta mtDNA4977). PCR products of delta mtDNA4977 were detectable after exposure to 10 Gy in the radioresistant squamous cell carcinoma cells, 2 Gy in the radiosensitive squamous cell carcinoma cells and 1 Gy in the radiosensitive AT cells. These observations suggest that ionizing radiation induces the delta mtDNA4977 in human cells and that the radiation doses required to induce this deletion reflect the sensitivity of cells to radiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号