首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p190 is a GTPase-activating protein (GAP) for the Rho family of GTPases. The GAP domain of p190 is at the C terminus of the protein. At its N terminus, p190 contains a GTP binding domain of unknown significance. We have introduced a mutation (Ser36 --> Asn) into this domain of p190 that decreased its ability to bind guanine nucleotide when expressed as a hemagglutinin (HA)-tagged protein in COS cells. In vitro, both the wild type and S36N mutant HA-p190 proteins showed similar GAP activities toward RhoA, but when expressed in NIH 3T3 fibroblasts only wild type p190 appeared able to function as a RhoGAP. Wild type HA-p190 induced a phenotype of rounded cells with long, beaded extensions similar to that seen when Rho function is disrupted by ADP-ribosylation. HA-p190(S36N), although expressed at a similar level to the wild type protein, had no discernible effect on the cells. The beaded extension phenotype induced by wild type HA-p190 required GAP function. A GAP-defective mutant, p190(R1283A), had no effect on cell morphology. Moreover, the beaded extension phenotype could be suppressed by co-expression of a gain-of-function Rho mutant, RhoA(G14V), or Rac mutant, Rac1(G12V). Activation of the Jun kinase (JNK) via muscarinic receptors was inhibited by wild type HA-p190, but JNK activity was enhanced by the S36N mutant. Co-expression of HA-p190 with a fragment containing only the mutated GTP binding domain partially inhibited the beaded extension phenotype, suggesting that it may sequester a factor required for p190 function. Taken together these data demonstrate that within the cell, the Rho/Rac GAP activity of p190 can be regulated by the N-terminal GTP binding domain.  相似文献   

2.
The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules.  相似文献   

3.
The majority of the GTP-binding proteins of the Ras superfamily hydrolyze GTP to GDP very slowly. A notable exception to this are the Rac proteins, which have intrinsic GTPase rates at least 50-fold those of Ras or Rho. A protein (or proteins) capable of inhibiting this GTPase activity exists in human neutrophil cytosol. Since Rac appears to exist normally in neutrophils as a cytosolic protein complexed to (Rho)GDI, we examined the ability of (Rho)GDI to inhibit GTP hydrolysis by Rac. (Rho)GDI produced a concentration-dependent inhibition of GTP hydrolysis by Rac1 that paralleled its ability to inhibit GDP dissociation from the Rac protein. Maximal inhibition occurred at or near equimolar concentrations of the GDI and the Rac substrate. The ability of two molecules exhibiting GTPase activating protein (GAP) activity toward Rac to stimulate GTP hydrolysis was also inhibited by the presence of (Rho)GDI. The inhibitory effect of the GDI could be overcome by increasing the GAP concentration to levels equal to that of the GDI. (Rho)GDI weakly, but consistently, inhibited GTP gamma S (guanosine 5'-3-O-(thio)triphosphate) dissociation from Rac1, confirming an interaction of (Rho)GDI with the GTP-bound form of the protein. These data describe an additional activity of (Rho)GDI and suggest a mechanism by which Rac might be maintained in an active form in vivo in the presence of regulatory GAPs.  相似文献   

4.
The p21-activated protein kinases (PAKs) are activated through direct interaction with the GTPases Rac and Cdc42Hs, which are implicated in the control of the mitogen-activated protein kinase (MAP kinase) c-Jun N-terminal kinase (JNK) and the reorganization of the actin cytoskeleton [1-3]. The exact role of the PAK proteins in these signaling pathways is not entirely clear. To elucidate the biological function of Pak2 and to identify its molecular targets, we used a novel two-hybrid system, the Ras recruitment system (RRS), that aims to detect protein-protein interactions at the inner surface of the plasma membrane (described in the accompanying paper by Broder et al. [4]). The Pak2 regulatory domain (PakR) was fused at the carboxyl terminus of a RasL61 mutant protein and screened against a myristoylated rat pituitary cDNA library. Four clones were identified that interact specifically with PakR and three were subsequently shown to encode a previously unknown homologue of the GTPase Cdc42Hs. This approximately 36 kDa protein, designated Chp, exhibits an overall sequence identity to Cdc42Hs of approximately 52%. Chp contains two additional sequences at the amino and carboxyl termini that are not found in any known GTPase. The amino terminus contains a polyproline sequence, typically found in Src homology 3 (SH3)-binding domains, and the carboxyl terminus appears to be important for Pak2 binding. Results from the microinjection of Chp into cells implicated Chp in the induction of lamellipodia and showed that Chp activates the JNK MAP kinase cascade.  相似文献   

5.
p120 GTPase-activating protein (GAP) is a negative regulator of Ras that functions at a key relay point in signal transduction pathways that control cell proliferation. Among other proteins, p120 GAP associates with p190, a GAP for the Ras-related protein, Rho. To characterize the p120.p190 interaction further, we used bacterially expressed glutathione S-transferase fusion polypeptides to map the regions of p120 necessary for its interactions with p190. Our results show that both the N-terminal and the C-terminal SH2 domains of p120 are individually capable of binding p190 expressed in a baculovirus/insect cell system. Moreover, the two SH2 domains together on one polypeptide bind synergistically to p190, and this interaction is dependent on tyrosine phosphorylation of p190. In addition, mutation of the highly conserved Arg residues in the critical FLVR sequences of both SH2 domains of full-length p120 reduces binding to tyrosine-phosphorylated p190. The dependence on p190 phosphorylation for complex formation with p120 SH2 domains observed in vitro is consistent with analysis of the native p120.p190 complexes formed in vivo. These findings suggest that SH2-phosphotyrosine interaction is one mechanism by which the cell regulates p120.p190 association and thus may be a means for coordinating the Ras- and Rho-mediated signaling pathways.  相似文献   

6.
Ras is a master GTPase switch controlling multiple signal transduction cascades in the regulation of cell proliferation and differentiation. Rab5 is a local GTPase switch that is localized on early endosomes and controls early endosome fusion. This study demonstrates that the catalytic domain of p120 GTPase-activating protein (GAP), a well known Ras GAP, is able to interact physically with Rab5 and stimulate its GTPase activity. This GAP activity toward Rab5, however, cannot be extended to other Rab GTPases such as Rab3, Rab4, and Rab6, indicating that it is not a generic GAP for the Rab family of GTPases that regulate intracellular membrane fusion during endocytosis and exocytosis. The findings indicate a level of structural similarity between Ras and Rab5 unexpected from their primary sequences. They also suggest a possible signal transduction regulation of the Rab5-dependent endosome fusion via the Ras GAP.  相似文献   

7.
Adenovirus (Ad) endocytosis via alphav integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

8.
9.
In a search for new partners of the activated form of Rac GTPase, we have isolated through a two-hybrid cloning procedure a human cDNA encoding a new GTPase-activating protein (GAP) for Rho family GTPases. A specific mRNA of 3.2 kilobases was detected in low abundance in many cell types and found highly expressed in testis. A protein of the predicted size 58 kDa, which we call MgcRacGAP, was detected in human testis as well as in germ cell tumor extracts by immunoblotting with antibodies specific to recombinant protein. In vitro, the GAP domain of MgcRacGAP strongly stimulates Rac1 and Cdc42 GTPase activity but is almost inactive on RhoA. N-terminal to its GAP domain, MgcRacGAP contains a cysteine-rich zinc finger-like motif characteristic of the Chimaerin family of RhoGAPs. The closest homolog of MgcRacGAP is RotundRacGAP, a product of the Drosophila rotund locus. In situ hybridization experiments in human testis demonstrate a specific expression of mgcRacGAP mRNA in spermatocytes similar to that of rotundRacGAP in Drosophila testis. Therefore, protein sequence similarity and analogous developmental and tissue specificities of gene expression support the hypothesis that RotundRacGAP and MgcRacGAP have equivalent functions in insect and mammalian germ cells. Since rotundRacGAP deletion leads to male sterility in the fruit fly, the mgcRacGAP gene may prove likewise to play a key role in mammalian male fertility.  相似文献   

10.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins recognized as critical components in intracellular vesicular transport and phospholipase D activation. Both guanine nucleotide-exchange proteins and GTPase-activating proteins (GAPs) for ARFs have been cloned recently. A zinc finger motif near the amino terminus of the ARF1 GAP was required for stimulation of GTP hydrolysis. ARD1 is an ARF family member that differs from other ARFs by the presence of a 46-kDa amino-terminal extension. We had reported that the ARF domain of ARD1 binds specifically GDP and GTP and that the amino-terminal extension acts as a GAP for the ARF domain of ARD1 but not for ARF proteins. The GAP domain of ARD1, synthesized in Escherichia coli, stimulated hydrolysis of GTP bound to the ARF domain of ARD1. Using ARD1 truncations, it appears that amino acids 101-190 are critical for GAP activity, whereas residues 190-333 are involved in physical interaction between the two domains of ARD1 and are required for GTP hydrolysis. The GAP function of the amino-terminal extension of ARD1 required two arginines, an intact zinc finger motif, and a group of residues which resembles a sequence present in Rho/Rac GAPs. Interaction between the two domains of ARD1 required two negatively charged residues (Asp427 and Glu428) located in the effector region of the ARF domain and two basic amino acids (Arg249 and Lys250) found in the amino-terminal extension. The GAP domain of ARD1 thus is similar to ARF GAPs but differs from other GAPs in its covalent association with the GTP-binding domain.  相似文献   

11.
The Rho family small GTP-binding proteins are subjected to regulation by Rho GTPase-activating proteins (GAPs) in the course of transmitting diverse intracellular signals. To understand the mechanism of GAP-catalyzed GTP hydrolysis of Rho GTPases, we have studied the interaction between RhoA and p190, the RasGAP binding phosphoprotein which has been implicated as a Rho-specific GAP, by delineating the structural determinants of RhoA and p190 GAP domain (p190GD) that are involved in their functional coupling. Besides the conserved residues Tyr34, Thr37, and Phe39 in the switch I region of RhoA which are required for p190GD interaction, chimeras made between RhoA and Cdc42, a close relative of RhoA with which p190GD interacts 50-fold less efficiently, revealed that residues outside the switch I and neighboring regions of RhoA, residues 85-122 in particular, contain the major p190GD-specifying determinant(s). Mutation of the unique Asp90 of RhoA in this region mostly abolished p190GD stimulation, whereas the corresponding reverse mutation of Cdc42 (S88D) was able to respond to p190GD-catalysis similarly as RhoA. Further kinetic analysis of these mutants provided evidence that Asp90 of RhoA contributes primarily to the specific binding interaction with p190GD. On the other hand, two charged residues of p190GD, Arg1283 and Lys1321, which are located in the putative G-protein binding helix pocket of GAP domain, were found to be involved in different aspects of interaction with RhoA. The R1283L mutant of p190GD lost GAP activity but retained the ability to bind to RhoA, while K1321A failed to stimulate and to bind to RhoA. These results indicate that residue Asp90 constitutes the second GAP-interactive site in RhoA which is mostly responsible for conferring p190GD-specificity, and suggest that the role of p190GD in the GTPase reaction of RhoA is in part to supply active site residue Arg1283 for efficient catalysis.  相似文献   

12.
The small GTP-binding protein RhoA becomes inactivated by hydrolyzing bound GTP to GDP through its intrinsic GTPase activity which is further stimulated by a family of Rho GTPase-activating proteins (GAPs). Here we have compared the kinetics of interaction between recombinant RhoA and the RhoGAP domains of p190, p50RhoGAP, Bcr, and 3BP-1. The intrinsic rate of GTP hydrolysis by RhoA is relatively slow when compared to other Rho-family GTPases such as Cdc42 or Rac1 with a rate constant of 0.022 min-1, which can be further stimulated at least 4000-fold by p190 or p50RhoGAP. The RhoGAP domains of Bcr and 3BP-1, which were thought to be inactive toward RhoA, are also found capable of stimulating the GTPase activity of RhoA in a dose-dependent manner. The supreme catalytic activities of p190 and p50RhoGAP toward RhoA reside mostly in their lower Km values (1.79 and 2.83 microM, respectively) which correlate well with their binding affinity for GMP-PNP-bound RhoA (2.18 and 2. 47 microM, respectively), in contrast with Bcr and 3BP-1 which interact with the activated RhoA with much higher Km (89 microM). However, the mechanisms of catalysis by p190 and p50RhoGAP are distinct in at least three aspects: (1) p50RhoGAP displays an effect of product inhibition by binding to the GDP-bound form of RhoA with a Kd of 6 microM in comparison with the Kd for p190 of 33 microM; (2) the Km of p190 increases drastically upon the increase of salt and Mg2+ concentrations, conditions under which only modest changes of Km for p50RhoGAP are observed; and (3) p50RhoGAP remains partially active toward the effector domain mutants of RhoA, Y34K, and T37A, whereas p190 is completely inactive toward Y34K and T37A. These results suggest that there exists a unique mechanism of functional interaction between RhoA and individual RhoGAP which involves distinct structural determinants of the small G-protein to cause the apparent differences in kinetic properties.  相似文献   

13.
The family of p21-activated kinases (PAKs) has been shown to contain a domain that can independently bind to the Ras-like proteins Cdc42Hs and Rac. We have expressed a 72 amino acid recombinant form of this p21-binding domain (PBD) from mPAK-3 in Escherichia Coli for use in structure-function studies. The protein can be purified on a nickel affinity resin due to a hexa-His tag that is incorporated onto the amino terminus of the domain. PBD binds to Cdc42Hs in a guanine nucleotide-dependent manner as demonstrated by a novel fluorescence assay that takes advantage of the spectroscopic properties of N-methylanthraniloyl (Mant)-guanine nucleotides. Ionic strength has little effect on the affinity of PBD for Cdc42Hs, but alkaline pH values tend to weaken the interaction. We have shown that the inhibition of the GTPase activity of Cdc42Hs, as well as a previously undescribed inhibition of guanine nucleotide dissociation, is mediated by the PBD portion of the mPAK-3 molecule. These findings suggest that PBD binding alters the geometry of the guanine nucleotide binding site on Cdc42Hs, perhaps as an outcome of the target/effector molecule binding in close proximity to the nucleotide domain. We therefore tested if mutations in the effector region of Cdc42Hs (32-40), which in Ras are very close to the guanine nucleotide binding site, had any effect on PBD binding. Changing tyrosine 32 to lysine (Y32K) resulted in a small (5-fold) inhibition of PBD binding, but the very conservative mutation D38E yielded at least a 50-fold decrease in affinity. Finally, the catalytic domain of the GTPase activating protein, Cdc42-GAP, was shown to inhibit PBD binding in a competitive manner, indicating that this target molecule and the negative regulator (GAP) bind to overlapping sites on the Cdc42Hs molecule.  相似文献   

14.
Rho family GTPases regulate multiple cellular processes, including cytoskeletal organization, gene expression, and transformation. These effects are achieved through the interaction of GTP-bound proteins with various downstream targets. A series of RhoA/Rac1 and Rho/Ras chimeras was generated to map the domain(s) of RhoA involved in its association with two classes of effector kinase, represented by PRK2 and ROCK-I. Although the switch 1 domain was required for effector binding, the N terminus of Rho (residues 1-75) was interchangeable with that of Rac. This suggested that the region of Rho that confers effector binding specificity lay further C-terminal. Subsequent studies indicated that the "insert domain"(residues 123-137), a region unique to Rho family GTPases, is not the specificity determinant. However, a determinant for effector binding was identified between Rho residues 75-92. Rac to Rho point mutations (V85D or A88D) within loop 6 of Rac promoted its association with PRK2 and ROCK, whereas the reciprocal Rho(D87V/D90A) double mutant significantly reduced effector binding capacity. In vivo studies showed that microinjection of Rac(Q6IL/V85D/A88D) but not Rac(Q6IL) induced stress fiber formation in LLC-PK epithelial cells, suggesting that loop 6 residues conferred the ability of Rac to activate ROCK. On the other hand, the reciprocal Rho (Q6IL/D87V/D90A) mutant was defective in its ability to transform NIH 3T3 cells. These data suggest that although Rho effectors can utilize a Rho or Rac switch 1 domain to sense the GTP-bound state of Rho, unique residues within loop 6 are essential for determining both effector binding specificity and cellular function.  相似文献   

15.
Signal transduction through the Rho family GTPases requires regulated cycling of the GTPases between the active GTP-bound state and the inactive GDP-bound state. Rho family members containing an arginine residue at position 186 in the C-terminal polybasic region were found to possess a self-stimulatory GTPase-activating protein (GAP) activity through homophilic interaction, resulting in significantly enhanced intrinsic GTPase activities. This arginine residue functions effectively as an "arginine finger" in the GTPase activating reaction to confer the catalytic GAP activity but is not essential for the homophilic binding interactions of Rho family proteins. The arginine 186-mediated negative regulation seems to be absent from Cdc42, a Rho family member important for cell-division cycle regulation, of lower eukaryotes, yet appears to be a part of the turn-off machinery of Cdc42 from higher eukaryotes. Introduction of the arginine 186 mutation into S. cerevisiae CDC42 led to phenotypes consistent with down-regulated CDC42 function. Thus, specific Rho family GTPases may utilize a built-in arginine finger, in addition to RhoGAPs, for negative regulation.  相似文献   

16.
BACKGROUND: Ras-mediated transformation of mammalian cells has been shown to activate multiple signalling pathways, including those involving mitogen-activated protein kinases and the small GTPase Rho. Members of the Rho family affect cell morphology by controlling the formation of actin-dependent structures: specifically, filopodia are induced by Cdc42Hs, lamellipodia and ruffles by Rac, and stress fibers by RhoA. In addition, Rho GTPases are involved in progression through the G1 phase of the cell cycle, and Rac1 and RhoA have recently been directly implicated in the morphogenic and mitogenic responses to transformation by oncogenic Ras. In order to examine the cross-talk between Ras and Rho proteins, we investigated the effects on focus-forming activity and cell growth of the Rho-family members Cdc42Hs, Rac1 and RhoG by expressing constitutively active or dominant-negative forms in NIH3T3 cells. RESULTS: Expression of Rac1 or RhoG modulated the saturation density to which the cells grew, probably by affecting the level of contact inhibition. Although all three GTPases were required for cell transformation mediated by Ras but not by constitutively active Raf, the selective activation of each GTPase was not sufficient to induce the formation of foci. The coordinated activation of Cdc42Hs, RhoG and Rac1, however, elicited a high focus-forming activity, independent of the mitogen-activated ERK and JNK protein kinase pathways. CONCLUSIONS: Ras-mediated transformation induces extensive changes in cell morphology which require the activity of members of the Rho family of GTPases. Our data show that the pattern of coordinated Rho family activation that elicits a focus-forming activity in NIH3T3 cells is distinct from the regulatory cascade that has been proposed for the control of actin-dependent structures in Swiss 3T3 cells.  相似文献   

17.
The enzymatic properties of Gap1(m) were characterized using three Ras and R-Ras proteins as substrates and were compared with those of p120GAP. Gap1(m) stimulated the GTPase of Ras better than that of R-Ras, in contrast to p120GAP which promoted the GTPase of R-Ras better than that of Ras. The EC50 values of Gap1(m) for Ha-Ras and R-Ras were 0.48 +/- 0.02 and 1.13 +/- 0.12 nM, respectively, whereas the EC50 values of p120GAP for Ha-Ras and R-Ras were 23.1 +/- 1.9 and 3.86 +/- 0.38 nM, respectively. The affinities of Gap1(m) and p120GAP to the substrates determined by competitive inhibition by using Ha-Ras.GTPgammaS (guanosine 5'-O-(3-thiotriphosphate)) or R-Ras.GTPgammaS as a competitor agreed well with the substrate specificities of these GTPase-activating proteins. The Km values of Gap1(m) for Ha-Ras and R-Ras were 1.53 +/- 0.27 and 3.38 +/- 0.53 microM, respectively, which were lower than that of p120GAP for Ha-Ras (145 +/- 11 microM) by almost 2 orders of magnitude. The high affinity of Gap1(m) to the substrates and its membrane localization suggest that Gap1(m) may act as a regulator of the basal activity of Ha-Ras and R-Ras.  相似文献   

18.
19.
20.
The Rho family GTPases, Rac1 and Rac2, regulate a variety of cellular functions including cytoskeletal reorganization, the generation of reactive oxygen species, G1 cell cycle progression and, in concert with Ras, oncogenic transformation. Among the many putative protein targets identified for Rac (and/or Cdc42), the Ser/Thr kinase p21-activated kinase (PAK) is a prime candidate for mediating some of Rac's cellular effects. This report shows that Rac1 binds to and stimulates the kinase activity of PAK1 approximately 2- and 4-5-fold, respectively, better than Rac2. Mutational analysis was employed to determine the structural elements on Rac and PAK that are important for optimal binding and activation. The most notable difference between the highly homologous Rac isomers is the composition of their C-terminal polybasic domains. Mutation of these six basic residues in Rac1 to neutral amino acids dramatically decreased the ability of Rac1 to bind PAK1 and almost completely abolished its ability to stimulate PAK activity. Moreover, replacing the highly charged polybasic domain of Rac1 with the less charged domain of Rac2 (and vice versa) completely reversed the PAK binding/activation properties of the two Rac isomers. Thus, polybasic domain differences account for the disparate abilities of Rac1 and Rac2 to activate PAK. PAK proteins also contain a basic region, consisting of three contiguous lysine residues (Lys66-Lys67-Lys68), which lies outside of the previously identified Cdc42/Rac-binding domain. Mutation of these Lys residues to neutral residues decreased PAK binding to activated Rac1 and Rac2 (but not Cdc42) and greatly reduced PAK1 activation by Rac1, Rac2, and Cdc42 proteins in vivo. In contrast, mutation of lysines 66-68 to basic Arg residues did not decrease (and in some cases enhanced) the ability of Rac1, Rac2, and Cdc42 to bind and activate PAK1. Our studies suggest that the polybasic domain of Rac is a novel effector domain that may allow the two Rac isomers to activate different effector proteins. In addition, our results indicate that a basic region in PAK is required for PAK activation and that binding of Rac/Cdc42 to PAK is not sufficient for kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号