首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of SrO (0·0–5·0 wt%) on partial substitution of alpha alumina (corundum) in ceramic composition (95 Al2O3–5B2O3) have been studied by co-precipitated process and their phase composition, microstructure, microchemistry and microwave dielectric properties were studied. Phase composition was revealed by XRD, while microstructure and microchemistry were investigated by electron-probe microanalysis (EPMA). The dielectric properties by means of dielectric constant (ε r ), quality factor (Q × f) and temperature coefficient of resonant frequency (τ f ) were measured in the microwave frequency region using a network analyser by the resonance method. The addition of B2O3 and SrO significantly reduced the sintering temperature of alumina ceramic bodies to 1600 °C with optimum density (∼ 4g/cm3) as compared with pure alumina powders recycled from Al dross (3·55g/cm3 sintered at 1700 °C).  相似文献   

2.
Refractive index and molar refraction of Li2O–, Na2O–, CaO–, and BaO–Ga2O3–SiO2 glasses have been used to test the validity of a structural model of silicate glasses containing Ga2O3 glasses. Ga2O3 enters these types of glass in a similar manner as Al2O3. It is assumed that, for (SiO2/Ga2O3) >1 and (Ga2O3/R2O) ≤1, Ga2O3 associates primarily with modifier oxides to form GaO4 units. The rest of modifier oxide forms silicate units with non-bridging oxygen ions. Silicate structural units have the same factors as found for binary alkali- and alkaline earth silicate glasses. Differences between experimental and model values suggest another structure for (Ga2O3/SiO2) ≥1.  相似文献   

3.
The effect of B2O3 addition on the sintering, microstructure and the microwave dielectric properties of the 5Li2O–0.58Nb2O5–3.23TiO2 (LNT) ceramics have been investigated. It is found that the LNT ceramics could be sintered well at ∼880 °C with low-level doping of B2O3 (≤2 wt.%). Only Li2TiO3 solid solution (Li2TiO3ss) crystal structure could be detected for all the ceramics with various amounts of B2O3 addition from the X-ray diffraction (XRD) results. And interestingly, two phases with different color in SEM images are observed in B2O3-doped LNT ceramics. EDS results suggest that the two different phases are two Li2TiO3ss phases with different amount of Nb. In addition, there is no much degradation in the microwave dielectric properties with the B2O3 adding. In the case of 0.5 wt.% B2O3-doped samples sintered at 880 °C, good microwave dielectric properties of ?r = 22, Q × f = 32,000 GHz, τf = 9.5 ppm °C−1 are obtained.  相似文献   

4.
As technology evolves towards the design of small size – high efficiency devices there is a necessity for the development of solid, stable electrolytes that can be fabricated in various shapes. Accordingly, a glass system of xB2O3·0.4Li2O·(0.6 − x)P2O5 with 0 ≤ x ≤ 0.6 mol%, was prepared by melting the raw materials at 1200 °C and rapidly cooling the melts at room temperature. The samples were afterwards heat treated to develop crystalline structures, for better identification of the units that build up the network.  相似文献   

5.
Besides the applications as optical functional materials, tellurium oxides also have attracted interest as microwave dielectric materials. Most TeO2-based binary and ternary system have large negative temperature coefficient of resonant frequency (τf), which is not compatible for the low-temperature cofired ceramic. To compensate τf close to zero, two single-phase predecessors of BaTe4O9 and TiTe3O8 are synthesized in air at 530–560 and 620–680 °C, respectively. The two predecessors show exceptional dielectric properties and their τf are opposite. The BaO–TiO2–TeO2 ternary system compounds are investigated by adjusting the ratio of BaTe4O9 and TiTe3O8 and sintered at 520–580 °C to develop the microwave properties and compensate the τf. After sintered at 560 °C, the ceramic sample with the composition of 0.47BaTe4O9–0.53TiTe3O8 exhibits a dielectric permittivity of 28, a Q × f-value of 12,200 GHz, and a τf of 4.0 ppm/°C measured at 10 GHz.  相似文献   

6.
Thermal properties and crystallization of glasses from PbO–MoO3–P2O5 ternary system were studied in three compositional series (100 − x)[0.5PbO–0.5P2O5]–xMoO3 (A), 50PbO–yMoO3–(50 − y)P2O5 (B), and (50 − z)PbO–zMoO3–50P2O5 (C). Glass transition temperature, crystallization temperature, coefficient of thermal expansion, and dilatation softening temperature of the studied glasses were determined by differential thermal analysis and dilatometry. Crystallization products of annealed glass samples were investigated by X-ray diffraction and Raman spectroscopy. X-ray diffraction analysis of crystallized glasses revealed the formation of PbP2O6, Pb3P4O13, and PbMoO4 in the samples of the B series. In the series A and C in the samples with a high MoO3 content, crystalline compounds of Pb(MoO2)2(PO4)2 and (MoO2)(PO3)2, respectively, were identified. Raman spectra of crystalline samples confirmed the results of X-ray diffraction measurements and provided also information on thermal stability of glasses and formation of glass-crystalline phases in the studied glass series.  相似文献   

7.
Glasses with composition (70 − x) B2O3·15Bi2O3·15LiF·xNb2O5 with x = 0–1.0 mol% were prepared by conventional glass-melting technique. The molar volume V m values decrease and the glass transition temperatures T g increase with increase of Nb2O5 content up to 0.2 mol%, which indicates that Nb5+ ions act as a glass former. Beyond 0.2 mol% Nb2O5 the V m increases and the T g decreases, which suggests that Nb5+ ions act as a glass modifier. The FTIR spectra suggest that Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups. The temperature dependence of the dc conductivity follows the Greaves variable range hopping model below 454 K, and follows the small polaron hopping model at temperatures >454 K. σ dc, σ ac conductivity and dielectric constant (ε) decrease and activation energy for dc conduction ΔE dc which increases with increasing Nb2O5 content up to 0.2 mol%, whereas σ dc, σ ac and (ε) increase and ΔE dc decreases with increasing Nb2O5 content beyond 0.2 mol%. The impedance spectroscopy shows a single semicircle or arcs which indicate only the ionic conduction mechanism. The electric modulus formalism indicates that the conductivity relaxation is occurring at different frequencies exhibit temperature-independent dynamical process. The (FWHM) of the normalized modulus increases with increase in Nb2O5 content suggesting that the distribution of relaxation times is associated with the charge carriers Li+ or F ions in the glass network.  相似文献   

8.
9.
10.
Soda alumina borosilicate glasses of composition (24-y)Na2yAl2O3·14B2O3·37SiO2·25Fe2O3, y = 8, 12, 14, 16 mol%, were melted using Fe2O3 as raw material. Besides, samples with y = 12 and Fe2O3 concentrations of 14.32, 17.8, and 25.0 mol% were prepared from FeC2O4·2H2O as raw material. The X-ray diffraction analyses showed the presence of magnetite for the samples from all the investigated compositions. Transmission electron microscopy (TEM) evidenced that all the samples are phase separated and droplets in the diameter range 100–1000 nm, enriched in iron, are formed. Inside these droplets, numerous small magnetite particles, with size in the 25–40 nm interval, are crystallized.  相似文献   

11.
A magnetic SO42−/ZrO2–B2O3–Fe3O4 solid superacid catalyst is prepared via a simple chemical co-precipitation approach. The obtained materials were characterized in detailed by X-ray powder diffraction, thermogravimetric analysis–different scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), electron microscopy (SEM and TEM), and Mossbauer spectra. Powder X-ray diffraction patterns show that in this composite oxide the transformation temperature of ZrO2 from tetragonal to monoclinic phase is higher compared to the pristine SO42−/ZrO2 material. The introduction of Fe3O4 endows the superacid with a super-paramagnetic property while in a ferromagnetic state after calcination. The superacid exhibits high catalytic activity in forming ethyl acetate by esterification.  相似文献   

12.
The crystallization behavior and magnetic properties of 10Li2O–9MnO2–16Fe2O3–25CaO–5P2O5–35SiO2 (10LFS) glass have been studied using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) to observe the crystallization behavior and a superconducting quantum interference device (SQUID) for measurements of the magnetic properties. The DTA shows that the 10LFS glass has one broad exothermic peak at approximately 674 °C and one sharp (the highest) exothermic peak at 764 °C. When the 10LFS glass crystallized at 850 °C for 4 h, the crystalline phases identified by XRD were lithium silicate (Li2SiO3), β-wollastonite (β-CaSiO3), lithium orthophosphate (Li3PO4), magnetite (FeFe2O4) and triphylite (Li(Mn0.5Fe0.5)PO4). The SEM surface analysis revealed that the β-wollastonite and lithium silicate have a lath morphology. The TEM microstructure examination showed that the largest FeFe2O3 particles have a size of approximately 0.3 μm. When the 10LFS glass was heat treated at 850 °C for 16 h and a magnetic field of 1000 Oe was applied, a very small remnant magnetic induction of 0.01 emu g1 and a coercive force of 50 Oe were obtained, which revealed an inverse spinel structure.  相似文献   

13.
Glasses were prepared by the melt-quench technique in the K2O–SiO2–Bi2O3–TiO2 (KSBT) system and crystallized bismuth titanate, BiT (Bi4Ti3O12) phase in it by controlled heat-treatment at various temperature and duration. Different physical, thermal, optical, and third-order susceptibility (χ3) of the glasses were evaluated and correlated with their composition. Systematic increase in refractive index (n) and χ3 with increase in BiT content is attributed to the combined effects of high polarization and ionic refraction of bismuth and titanium ions. Microstructural evaluation by FESEM shows the formation of polycrystalline spherical particles of 70–90 nm along with nano-rods of average diameter of 85–90 nm after prolonged heat treatment. A minor increase in dielectric constants (εr) has been observed with increase in polarizable components of BiT in the glasses, whereas a sharp increase in εr in glass–ceramics is found to be caused by the formation of non-centrosymmetric and ferroelectric BiT nanocrystals in the glass matrix.  相似文献   

14.
In this study, we report a Ho2O3 electrolyte–insulator–semiconductor (EIS) device films deposited on Si substrates through reactive sputtering. The effect of thermal annealing (700, 800, and 900 °C) on the structural and surface properties of Ho2O3 sensing film was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. We found that the EIS device with a Ho2O3 sensing film annealed at 800 °C exhibited a higher sensitivity of ∼57 mV/pH, a lower hysteresis voltage of 2.68 mV, and a smaller drift rate of 2.83 mV h−1 compared to those at other annealing conditions. This improvement can be attributed to the well-crystallized Ho2O3 structure and the large surface roughness.  相似文献   

15.
The low-fired (ZnMg)TiO3–TiO2 (ZMT–TiO2) microwave ceramics using low melting point CaO–B2O3–SiO2 as sintering aids have been developed. The influences of Mg substituted fraction on the crystal structure and microwave properties of (Zn1−x Mg x )TiO3 were investigated. The result reveals that the sufficient amount of Mg (x ≥ 0.3) could inhibit the decomposition of ZnTiO3 effectively, and form the single-phase (ZnMg)TiO3 at higher sintering temperatures. Due to the compensating effect of rutile TiO2f = 450 ppm/°C), the temperature coefficient of resonant frequency (τf) for (Zn0.65Mg0.35)TiO3–0.15TiO2 with biphasic structure was adjusted to near zero value. Further, CaO–B2O3–SiO2 addition could reduce the sintering temperature from 1150 to 950 °C, and significantly improve the sinterability and microwave properties of ZMT–TiO2 ceramics, which is attributed to the formation of liquid phases during the sintering process observed by SEM. The (Zn0.65Mg0.35)TiO3–0.15TiO2 dielectrics with 1 wt% CaO–B2O3–SiO2 sintered at 950 °C exhibited the optimal microwave properties: ε ≈ 25, Q × f ≈ 47,000 GHz, and τf ≈ ± 10 ppm/°C.  相似文献   

16.
The CaO–B2O3–SiO2 glass/CaSiO3 ceramic (CBS/CS) composites were fabricated via sol–gel processing routes. Their densification behavior, structures and dielectric properties were investigated. The precursors of CBS glass and CS ceramic filler were firstly obtained via individual soft chemical route and then mixed together in various proportions. The results indicated that the structures of CBS/CS composites are characteristic of CS and CaB2O4 (CB) ceramic phases distributed in the matrix of glass phase at 800–950 °C. The CS ceramic phase not only acts as fillers, but nuclei for the crystallization of CBS glass as well such that the CS content exhibits an effect on the densification and dielectric properties of the composites. The CBS/CS composites with 10% CS sintered at 850 °C own dielectric properties of εr < 5 and tanδ = 6.4 × 10−4 at 1 MHz.  相似文献   

17.
Silver ion conducting super-ionic glass system xPbI2–(100 − x) [Ag2O–2(V2O5–B2O3)], where, 5 ≤ x ≤ 25, were prepared via melt quenching route and -characterized by XRD and DSC. Their electrical properties were measured by impedance spectroscopy in the frequency range of 2 MHz to 20 Hz from 30 to 120 °C. The electrical relaxation mechanism has been studied using AC conductivity, dielectric modulus function and frequency dependent dielectric permittivity over a wide range of frequency and temperature. Two different scaling approaches for AC conductivity as well as dielectric permittivity spectra were used to understand the nature of relaxation processes.  相似文献   

18.
Vapor pressure (293.15 K-423.15 K, 50%–70%), specific heat capacity (303.15 K-373.15 K, 45%–60%) and specific enthalpy (303.15 K −373.15 K, 45%–60%) of LiNO3–H2O working fluid were measured. Dissolution heat of LiNO3 at 294.15 K was also determined. The corrosion behaviors of carbon steel, stainless steel 304 in LiBr and LiNO3 solutions were investigated at the temperature of 453.15 K, and the corrosivity of LiNO3 solution was obviously less severe than that of LiBr solution. Based on the measured data, performances of an absorption heat pump cycle based on LiNO3–H2O has been investigated and compared with the LiBr–H2O heat pump cycle under the same conditions. The results show that the cycle based on LiNO3–H2O has an advantage of 6.3 °C in the temperature grade of driving heat source against that based on LiBr–H2O, while the COP based on LiNO3–H2O is slightly higher than that based on LiBr–H2O.  相似文献   

19.
研究了B2O3(B)和Al2O3(Al)共掺杂对ZnO压敏陶瓷电学性能和微观结构的影响。结果表明,共掺杂B和Al的ZnO压敏陶瓷,具有低泄漏电流、高非线性和低剩余电压等优良电性能。B和Al的掺杂率为3.0%(摩尔分数)和0.015%(摩尔分数)的ZnO压敏陶瓷,其最佳样品的电参数为:击穿电压E1 mA=475 V/mm;泄漏电流JL=0.16 μA/cm2;非线性系数α=106;剩余电压比K = 1.57。  相似文献   

20.
The phase transformation and crystallization kinetics of (1 − x)Li2O–xNa2O–Al2O3–4SiO2 glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na2O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na2O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 ± 22.2 to 284.0 ± 10.8 kJ mol−1 when the Na2O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 ± 10.8 to 446.0 ± 23.2 kJ mol−1 when the Na2O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 − x)Li2O–xNa2O–Al2O3–4SiO2 glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号