首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
研究时效温度和时间对Cu-1.0Ni-0.25Si-0.1Zn合金组织和性能的影响,以及冷变形对该合金时效后性能的影响。合金经850℃固溶、450℃时效处理后,第二相呈弥散分布,并可获得较高的显微硬度及导电率。通过该合金在450℃时效过程中的导电率变化和根据导电率与新相的转变量之间的关系计算出了时效过程中新相的转变比率。从而确定了该温度下时效的Avrami相变动力学方程及导电率方程。  相似文献   

2.
Cu-3.2Ni-0.75Si-0.3Zn合金的时效与再结晶研究   总被引:2,自引:0,他引:2  
研究了时效温度及时效时间对Cu-3.2Ni-0.75Si-0.3Zn合金性能的影响.通过该合金在450℃时效过程中的导电率变化,根据导电率与新相的转变量之间的关系计算时效过程中新相转变比率.确定该温度下时效的相变动力学方程及导电率方程.同时研究了该合金在450℃时效不同时间后,经不同变形量后的再结晶组织和性能变化.结果表明二次时效可使合金在较短的时效时间内获得更高的导电率.Cu-3.2Ni-0.75Si-0.3Zn合金经预时效 变形后的时效过程中,可发生原位再结晶和不连续再结晶2种形式的再结晶.  相似文献   

3.
利用力学性能、电学性能测量、金相、电镜观察及电子衍射分析研究了时效及冷变形对Cu-5.2Ni-1.2Si合金硬度和电导率的影响规律.结果表明:时效前的冷变形可以加速时效析出过程,在时效初期尤为明显;Cu-5.2Ni-1.2Si合金冷轧80%在450℃时效15 min,其硬度可以达到3.02 GPa,其相对电导率达到53.8%IACS.合金的强化机制为Orowan位错绕过机制:合金的导电率与析出相的体积分数之间存在线性关系.  相似文献   

4.
研究了时效温度和时效时间对不同冷变形条件下Cu-2.0Ni-0.5Si-0.15Ag合金组织和性能的影响.结果表明,Cu-2.0Ni-0.5Si-0.15Ag合金经900 ℃×1 h固溶处理和不同预冷变形,在450 ℃和500 ℃时效处理,第二相呈弥散分布,能获得较高的显微硬度与导电率,析出相为Ni2Si相.当变形量为80%、时效温度达到500 ℃时,其显微硬度达到252 HV0.1,导电率达到45%IACS;合金经40%变形、450 ℃×4 h时效处理后,其抗拉强度达到680 MPa.  相似文献   

5.
时效对Cu-2.0Ni-0.5Si合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了时效温度和时效时间对不同冷变形条件下Cu 2.0Ni 0.5Si合金组织和性能的影响.结果表明,合金经900 ℃固溶,在经不同冷变形后时效,第二相呈弥散分布,当变形量为80%,时效温度为500 ℃,时效时间为1 h时,其显微硬度HV达到250,电导率达到22.625 MS/m,与未经过预冷变形的合金时效相比,合金能获得较高的显微硬度与电导率.时效前的预冷变形能够有力的促进合金在时效过程中第二相的析出,从而提高合金的显微硬度和电导率.合金经40%预冷变形,450 ℃×4 h时效后,其抗拉强度达到620 MPa.拉伸试样断口表现出明显的塑性断裂特征.  相似文献   

6.
研究了喷射成形Cu-3.2Ni-0.75Si合金"固溶+60%冷轧态"、"60%冷轧态"和"初始态"的时效特性,分析了时效对显微硬度和电导率的影响.结果表明,时效前的冷轧可以促进析出并提高强化效果,而时效前的先期析出相在显微硬度峰值过后的快速长大是造成显微硬度迅速下降的主要原因;结果还表明,"固溶+60%冷轧态"合金可以获得最高的峰值显微硬度(301 HV),"60%冷轧态"合金则可获得最高的电导率.  相似文献   

7.
研究了不同固溶工艺条件对Cu-1.4Ni-1.2Co-0.6Si合金显微组织的影响,对合金固溶-时效后的显微硬度和导电率进行了分析,并采用电子衍射及透射电镜分析其显微组织。结果表明:合金铸态组织以等轴晶为主,热轧变形组织中存在许多细小析出相。热轧合金在固溶处理过程中基体变形组织发生再结晶和晶粒长大,且随着固溶温度升高,析出相固溶量增加,至975℃时,析出相粒子基本回溶到基体中。合金中的析出相与Cu-Ni-Si合金具有相同的结构和形貌,与Cu基体的位向关系为:[001]Cu//[110]p,(010)Cu//(001)p;[112]Cu//[32 4]p,(110)Cu//(2 11)p。合金最佳固溶-时效处理工艺为975℃×1.5 h+500℃×4 h时效,在此工艺条件下,合金显微硬度为232 HV,相对导电率为49%IACS。  相似文献   

8.
研究了时效温度和时间对Cu-1.5Ni-0.6Si合金性能的影响.通过对固溶态Cu-1.5Ni-0.6Si合金450℃时效过程中的电导率的变化,根据电导率与新相的转变量之间的关系计算时效过程中新相的变化率.根据Avrami经验公式确定该温度下时效的相变动力学方程及电导率方程.实验结果表明,时效析出为Cu-1.5Ni-0.6Si合金的主要强化手段.Cu-1.5Ni-0.6Si固溶后经不同温度时效后,时效初期硬度和电导率快速上升,随后硬度到达峰值后缓慢下降,而电导率继续上升.由该电导率方程所得的计算值能较好地与实验值相符,为该合金的生产工艺的制定提供参考依据.  相似文献   

9.
研究了时效处理后不同程度冷变形的Cu-1.5Ni-1.0Co-0.6Si合金的时效行为,利用光学显微镜和透射电镜分析了合金时效过程和显微组织,并对其孪晶及析出相进行了标定;同时研究了时效处理和冷轧变形量对合金导电率和显微硬度的影响,建立了导电率方程和时效析出动力学方程,探讨了合金的时效强化机制和时效析出动力学。结果表明:经过时效处理,Cu-1.5Ni-1.0Co-0.6Si合金的硬度和导电率均得到提升;Cu-1.5Ni-1.0Co-0.6Si合金经40%冷轧变形后,在500℃时效1 h后,其导电率为44%·IACS,显微硬度为255 HV0.1。Cu-1.5Ni-1.0Co-0.6Si合金在500℃时效时,合金析出相析出完成所用时间最短。  相似文献   

10.
Cu-3.2Ni-0.75Si-0.30Zn合金强化相的析出行为分析   总被引:4,自引:1,他引:3  
采用金相组织分析、力学性能和电导率测试研究了Cu-3.2Ni-0.75Si-0.30Zn合金的过饱和固溶体在时效过程中强化相的析出机制.结果表明,在250℃~450℃时效初期,过饱和固溶体按调幅分解的方式进行转变,形成溶质原子的贫集区和富集区;随时效时间的延长,溶质原子富集区出现有序化,形成与基体半共格的强化相(Ni2Si);继续时效时,强化相不断析出与长大,半共格关系被破坏,最终在表面张力的作用下逐渐球化,电导率和显微硬度上升趋势随之减弱.  相似文献   

11.
Cu-3.2Ni-0.75Si-0.30Zn合金时效过程的动力学分析   总被引:7,自引:0,他引:7  
通过研究时效过程中电阻率的变化规律 ,分析了Cu 3.2Ni 0 .75Si 0 .30Zn合金的时效析出特性及其动力学过程。结果表明 :低温时效时扩散作用是合金析出过程的主要控制因素 ,时效早期通过调幅分解形成溶质原子的富集区 ,然后在溶质富集区发生失稳有序化 ,最后生成δ Ni2 Si相 ;高温时效时相变驱动力成为主要控制因素 ,由于生成δ Ni2 Si相的驱动力较大 ,所以直接析出δ Ni2 Si相。结合透射电镜研究了合金时效过程中显微组织的变化 ,并得出了合金的时间—温度—转变曲线 (即TTT曲线 )。  相似文献   

12.
对铸造Cu-15Ni-8Sn合金进行均匀化处理和固溶处理后,研究了时效温度和时效时间对合金硬度和导电率的影响。通过对显微组织以及硬度和导电率的变化分析结果表明,时效时间和时效温度对Cu-15Ni-8Sn合金的硬度和导电率都有较大影响,并确定了Cu-15Ni-8Sn合金最佳时效时间是5 h,最佳时效温度是425 ℃。  相似文献   

13.
Al-20Cu-4.5Si-3Ni-0.25RE合金的高温流变本构方程   总被引:1,自引:1,他引:0  
在Gleeble-1500热模拟机上进行高温等温圆柱体压缩试验,研究Al-20Cu-4.5Si-3Ni-0.25RE合金在高温塑性变形过程中流变应力的变化规律。结果表明:应变速率和变形温度的变化强烈地影响Al-20Cu-4.5Si-3Ni-0.25RE合金的流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大。可用Zener-Hollomon参数的双曲正弦形式来描述Al-20Cu-4.5Si-3Ni-0.25RE合金热压缩变形时的流变应力行为。  相似文献   

14.
15.
对自行研制的易切削Zn-10Al-1.0Cu-0.1Bi-0.1Sn变形合金铸态样品进行均匀化热处理,并采用力学性能测试、扫描电镜分析、钻削试验等手段,研究了热处理对该合金显微组织与力学性能和切削性能的影响。结果表明,试验合金铸态组织中存在较严重的枝晶偏析及非平衡共晶组织,经均匀化退火后,枝晶偏析和非平衡β+η共晶组织基本消除,组织分布更加均匀;其中经360℃保温12 h炉冷热处理后合金的抗拉强度降低,伸长率升高53.94%,塑性明显提高,有利于后续的热塑性加工;均匀化热处理对合金的切削性能影响不大。  相似文献   

16.
用熔铸法制备了Cu-12%Fe合金,研究了经1000℃固溶后不同时效工艺对合金的相组成、显微组织、硬度及电导率的影响.结果表明,550℃时效可细化合金的Fe枝晶.消除Cu基体枝晶偏析并改变晶面间距.合金硬度在时效初期时下降,随后增加并达到最大值后再次下降.在350℃和450℃时效时,电导率随时效时间增加而上升.在550℃和650℃时效时,电导率随时效时间先增加而后下降.对Cu-12%Fe合金固溶并在550℃时效4h,可以获得良好的力学和电学性能匹配.  相似文献   

17.
对Cu-2.32Ni-0.57Si-0.05P合金经不同程度的变形和不同工艺时效处理后的显微硬度、电导率和抗拉强度进行了测试,在TEM、SEM下对合金析出相进行了观察和分析.结果表明,形变和时效综合作用能显著提高该合金的综合性能.该合金经900 ℃×1 h固溶处理、经不同预冷变形后,在450 ℃时效可获得良好的综合性能.当变形量为80%,在450 ℃下时效1 h,其显微硬度和电导率分别可达HV 240和23.78 MS/m;当变形量为40%,在450 ℃下时效1 h,其抗拉强度达到568 MPa.时效过程中的析出相为δ-Ni2Si相,颗粒细小、呈弥散分布,且随时效时间的延长逐渐长大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号