首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incorporation of 32P into telokin, a smooth muscle-specific, 17-18-kDa, acidic (pI 4.2-4.4) protein, was increased by forskolin (20 microM) in intact rabbit ileum smooth muscle (ileum) and by 8-bromo-cyclic GMP (100 microM) in alpha-toxin-permeabilized ileum. Native telokin (5-20 microM), purified from turkey gizzard, and recombinant rabbit telokin, expressed in Escherichia coli and purified to >90% purity, induced dose-dependent relaxation, associated with a significant decrease in regulatory myosin light chain phosphorylation, without affecting the rate of thiophosphorylation of regulatory myosin light chain of ileum permeabilized with 0.1% Triton X-100. Endogenous telokin was lost from ileum during prolonged permeabilization (>20 min) with 0.1% Triton X-100, and the time course of loss was correlated with the loss of 8-bromo-cyclic GMP-induced calcium desensitization. Recombinant and native gizzard telokins were phosphorylated, in vitro, by the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase, and p42/44 mitogen-activated protein kinase; the recombinant protein was also phosphorylated by calmodulin-dependent protein kinase II. Exogenous cGMP-dependent protein kinase (0.5 microM) activated by 8-bromo-cyclic GMP (50 microM) phosphorylated recombinant telokin (10 microM) when added concurrently to ileum depleted of its endogenous telokin, and their relaxant effects were mutually potentiated. Forskolin (20 microM) also increased phosphorylation of telokin in intact ileum. We conclude that telokin induces calcium desensitization in smooth muscle by enhancing myosin light chain phosphatase activity, and cGMP- and/or cAMP-dependent phosphorylation of telokin up-regulates its relaxant effect.  相似文献   

2.
Cyclic nucleotides are known to modify voltage-gated (L-type) Ca2+ channel activity in vascular smooth muscle cells, but the exact mechanism(s) underlying these effects is not well defined. The purpose of the present study was to investigate the modulatory role of the cAMP- and cGMP-dependent protein kinase (PKA and PKG, respectively) pathways in Ca2+ channel function by using both conventional and perforated-patch-clamp techniques in rabbit portal vein myocytes. The membrane-permeable cAMP derivative, 8-bromo cAMP (0.1 to 10 micromol/L), significantly increased (14% to 16%) peak Ba2+ currents, whereas higher concentrations (0.05 to 0.1 mmol/L) decreased Ba2+ currents (23% to 31%). In contrast, 8-bromo cGMP inhibited Ba2+ currents at all concentrations tested (0.01 to 1 mmol/L). Basal Ca2+ channel currents were significantly inhibited by the PKA blocker 8-Bromo-2'-O-monobutyryladenosine-3',5'-monophosphorothioate, Rp-isomer (Rp 8-Br-MP cAMPS, 30 micromol/L) and enhanced by the PKG inhibitor beta-Phenyl-1,N2-etheno-8-bromoguanosine-3',5'-monophosphorothioate, Rp-isomer (Rp-8-Br PET cGMPS, 10 nmol/L). In the presence of Rp 8-bromo PET cGMPS (10 to 100 nmol/L), both 8-bromo cAMP (0.1 mmol/L) and 8-bromo cGMP (0.1 mmol/L) enhanced Ba2+ currents (13% to 39%). The excitatory effect of 8-bromo cGMP was blocked by Rp 8-bromo MB-cAMPS. Both 8-bromo cAMP (0.05 mmol/L) and forskolin (10 micromol/L) elicited time-dependent effects, including an initial enhancement followed by suppression of Ba2+ currents. Ba2+ currents were also enhanced when cells were dialyzed with the catalytic subunit of PKA. This effect was reversed by the PKA blocker KT 5720 (200 nmol/L). Our results suggest that cAMP/PKA stimulation enhances and cGMP/PKG stimulation inhibits L-type Ca2+ channel activity in rabbit portal vein myocytes. Our results further suggest that both cAMP and cGMP have a primary action mediated by their own kinase as well as a secondary action mediated by the opposing kinase.  相似文献   

3.
When 7721 human hepatocarcinoma cells were treated with 100 nM phorbol-12-myristate-13-acetate (PMA), the activity of N-acetylglucosaminyltransferase V(GnT-V) in the cells varied in accordance with the activity of membranous protein kinase C (PKC), but not with that of cytosolic PKC. Quercetin, a non-specific inhibitor of Ser/Thr protein kinase, and D-sphingosine and staurosporine, two specific inhibitors of PKC, blocked the activation of membranous PKC and GnT-V by PMA. Among the three inhibitors, quercetin was least effective. The inhibitory rates of quercetin and staurosporine toward membranous PKC and GnTV were proportional to the concentrations of the two inhibitors. The activities of GnTV and membranous protein kinase A (PKA) were also induced in parallel by dibutyryl cAMP (db-cAMP) and this induction was blocked by a specific PKA inhibitor. When cell free preparations of 7721 cells and human kidney were treated with alkaline phosphatase (ALP) to remove the phosphate groups, the GnTV activities were decreased. These results suggest that GnTV may be activated by membranous PKC or PKA, indirectly or directly, via phosphorylation of Ser/Thr residues.  相似文献   

4.
The signal transduction pathway underlying the cAMP-dependent modulation of rat striatal N-methyl-D-aspartate (NMDA) responses was investigated by using the two-electrode voltage-clamp technique. In oocytes injected with rat striatal poly(A)+ mRNA, activation of cAMP-dependent protein kinase (PKA) by forskolin potentiated NMDA responses. Inhibition of protein phosphatase 1 (PP1) and/or protein phosphatase 2A (PP2A) by the specific inhibitor calyculin A occluded the PKA-mediated potentiation of striatal NMDA responses, suggesting that the PKA effect was mediated by inhibition of a protein phosphatase. Coinjection of oocytes with striatal mRNA and antisense oligodeoxynucleotides directed against the protein phosphatase inhibitor DARPP-32 dramatically reduced the PKA enhancement of NMDA responses. NMDA responses recorded from oocytes injected with rat hippocampal poly(A)+ mRNA were not affected by stimulation of PKA. When oocytes were coinjected with rat hippocampal poly(A)+ mRNA plus complementary RNA coding for DARPP-32, NMDA responses were potentiated after stimulation of PKA. The results provide evidence that DARPP-32, which is enriched in the striatum, may participate in the signaling between the two major afferent striatal pathways, the glutamatergic and the dopaminergic projections, by the cAMP-dependent regulation of striatal NMDA currents.  相似文献   

5.
BACKGROUND: The ion pump Na+,K(+)-ATPase is responsible for the secretion of cerebrospinal fluid from the choroid plexus. In this tissue, the activity of Na+,K(+)-ATPase is inhibited by serotonin via stimulation of protein kinase C-catalyzed phosphorylation. The choroid plexus is highly enriched in two phosphoproteins which act as regulators of protein phosphatase-1 activity, DARPP-32 and inhibitor-1. Phosphorylation catalyzed by cAMP-dependent protein kinase on a single threonyl residue converts DARPP-32 and inhibitor-1 into potent inhibitors of protein phosphatase-1. Previous work has shown that in the choroid plexus, phosphorylation of DARPP-32 and I-1 is enhanced by isoproterenol and other agents that activate cAMP-PK. We have now examined the possible involvement of the cAMP-PK/protein phosphatase-1 pathway in the regulation of Na+,K(+)-ATPase. MATERIALS AND METHODS: The state of phosphorylation of Na+,K(+)-ATPase was measured by determining the amount of radioactivity incorporated into the ion pump following immunoprecipitation from 32P-prelabeled choroid plexuses incubated with various drugs (see below). Two-dimensional phosphopeptide mapping was employed to identify the protein kinase involved in the phosphorylation of Na+,K(+)-ATPase. RESULTS: The serotonin-mediated increase in Na+,K(+)-ATPase phosphorylation is potentiated by okadaic acid, an inhibitor of protein phosphatases-1 and -2A, as well as by forskolin or the beta-adrenergic agonist, isoproterenol, activators of cAMP-dependent protein kinase. Two-dimensional phosphopeptide maps suggest that this potentiating action occurs at the level of a protein kinase C phosphorylation site. Forskolin and isoproterenol also stimulate the phosphorylation of DARPP-32 and protein phosphatase inhibitor-1, which in their phosphorylated form are potent inhibitors of protein phosphatase-1. CONCLUSIONS: The results presented here support a model in which okadaic acid, forskolin, and isoproterenol achieve their synergistic effects with serotonin through phosphorylation of DARPP-32 and inhibitor-1, inhibition of protein phosphatase-1, and a reduction of dephosphorylation of Na+,K(+)-ATPase at a protein kinase C phosphorylation site.  相似文献   

6.
A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope.  相似文献   

7.
The antidiuretic hormone arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells by inducing a cAMP-dependent translocation of water channels (aquaporin-2, AQP-2) from intracellular vesicles into the apical cell membranes. In subcellular fractions from primary cultured rat inner medullary collecting duct (IMCD) cells, enriched for intracellular AQP-2-bearing vesicles, catalytic protein kinase A (PKA) subunits and several protein kinase A anchoring proteins (AKAPs) were detected. In nonstimulated IMCD cells the majority of AQP-2 staining was detected intracellularly but became mainly localized within the cell membrane after stimulation with AVP or forskolin. Quantitative analysis revealed that preincubation of the cells with the synthetic peptide S-Ht31, which prevents the binding between AKAPs and regulatory subunits of PKA, strongly inhibited AQP-2 translocation in response to forskolin. Preincubation of the cells with the PKA inhibitor H89 prior to forskolin stimulation abolished AQP-2 translocation. In contrast to H89, S-Ht31 did not affect the catalytic activity of PKA. These data demonstrate that not only the activity of PKA, but also its tethering to subcellular compartments, are prerequisites for cAMP-dependent AQP-2 translocation.  相似文献   

8.
Cell differentiation is frequently accompanied by alterations in the composition of gangliosides in the plasma membrane resulting from a regulation of the enzyme activities involved. The regulation of CMP-NeuAc:GM1 alpha2-3-sialyltransferase (ST-IV) and UDP-GalNAc:GM3 N-acetylgalactosaminyltransferase (Gal-NAc-T) by the degree of enzyme phosphorylation was analyzed by determination of the enzyme activity on incubation of NG108-15 cells with various protein phosphatase inhibitors (okadaic acid and orthovanadate) or protein kinase activators (phorbol ester and forskolin). Incubation with okadaic acid, but not with orthovanadate, inhibited the ST-IV activity to 45% of that of control cells with t(1/2) = 60 min for the inactivation reaction. This indicates a rapid hyperphosphorylation of ST-IV due to the inhibition of a serine/threonine-specific phosphatase. A similar rate of inactivation was found on stimulation of protein kinase C with phorbol ester. In contrast to ST-IV, the activity of GalNAc-T was increased on stimulation of intracellular phosphorylation systems. The fastest activation of GalNAc-T was achieved with forskolin, yielding up to 160% of the initial activity within 30 min of effector incubation. Up-regulation of GalNAc-T in conjunction with down-regulation of ST-IV by stimulation of phosphorylation is suggested to serve as a physiological mechanism to increase the concentration of GM1, which was found to be elevated in correlation with the cell density. This assumption was corroborated by metabolic labeling studies with radioactive ganglioside precursors indicating an enhancement of the relative amount of a-series gangliosides subsequent to GM3 on phosphorylation stimulation. In particular, the biosynthesis of GM1 was specifically elevated within 2 h of incubation with forskolin. We conclude from the overall data that the ganglioside composition during the cell differentiation of NG108-15 cells can be specifically regulated by both protein kinase A- and protein kinase C-related phosphorylation systems.  相似文献   

9.
Protein kinase A (PKA) stimulates Cl secretion by activating the cystic fibrosis transmembrane conductance regulator (CFTR), a tightly regulated Cl- channel in the apical membrane of many secretory epithelia. The CFTR channel is also modulated by protein kinase C (PKC), but the regulatory mechanisms are poorly understood. Here we present evidence that PKA-mediated phosphorylation alone is not a sufficient stimulus to open the CFTR chloride channel in the presence of MgATP; constitutive PKC phosphorylation is essential for acute activation of CFTR by PKA. When patches were excised from transfected Chinese hamster ovary cells, CFTR responses to PKA became progressively smaller with time and eventually disappeared. This decline in PKA responsiveness did not occur in the presence of exogenous PKC and was reversed by the addition of PKC to channels that had become refractory to PKA. PKC enhanced PKA stimulation of open probability without increasing the number of functional channels. Short-term pretreatment of cells with the PKC inhibitor chelerythrine (1 microM) reduced the channel activity that could be elicited by forskolin in cell-attached patches. Moreover, in whole cell patches, acute stimulation of CFTR currents by chlorophenylthio-cAMP was abolished by two chemically unrelated PKC inhibitors, although an abrupt, partial activation was observed after a delay of >15 min. Modulation by PKC was most pronounced when basal PKC phosphorylation was reduced by briefly preincubating cells with chelerythrine. Constitutive PKC phosphorylation in unstimulated cells permits the maximum elevation of open probability by PKA to reach a level that is approximately 60% of that attained during in vitro exposure to both kinases. Differences in basal PKC activity may contribute to the variable cAMP responsiveness of CFTR channels in different cell types.  相似文献   

10.
The cytosolic extract from Drosophila heads was separated using anion-exchange column chromatography. Two types of cAMP-dependent protein kinase (PKA), type I and type II, were detected, and type II PKA was found to be a major isozyme. The regulatory subunit of type II PKA (RII) was purified, and only one isoform was observed. The purified protein had an apparent molecular mass of 51 kDa on SDS gel electrophoresis. Partial amino acid sequences of the protein were almost identical with the RII alpha subunit of human. Since PKA has been implicated to be especially important for learning and memory in Drosophila, the RII subunit may play an essential role in the regulation of neuronal activity in the brain of Drosophila, and possibly in human.  相似文献   

11.
cAMP and Ca2+ acted together with the acute phase cytokine interleukin-1beta (IL-1beta) to inhibit hepatocyte DNA replication. At sub-basal activity of cAMP-dependent protein kinase (PKA), neither IL-1beta nor the Ca2+-elevating hormone vasopressin affected hepatocyte proliferation. Basal level of PKA activity permitted IL-1beta action. Increased PKA activity also permitted vasopressin action and sensitized further towards IL-1beta, which acted at 10-50 pM concentrations. Vasopressin acted via Ca2+/calmodulin-dependent protein kinase II (CaMKII), and its action was mimicked by the serine/threonine phosphatase inhibitor microcystin, which activates CaMKII. Inhibitors (KN93 and KT5926) of CaMKII selectively counteracted the effects of vasopressin and microcystin on hepatocyte proliferation at concentrations similar to those required to inhibit CaMKII in vitro. Two-dimensional gel electrophoresis of 32P-prelabeled hepatocytes revealed a common set of proteins phosphorylated in response to vasopressin and microcystin. Their phosphorylation was counteracted by CaMKII inhibitor (KT5926). Phosphorylation of the CaMKII substrate phenylalanine hydroxylase (PAH; EC 1.14.16.1) was used as an endogenous marker of CaMKII activation. It was found that treatment of the cells with vasopressin or microcystin increased the phosphorylation of PAH, and that the vasopressin-induced PAH phosphorylation was inhibited by KT5926. In conclusion, the Ca2+-elevating hormone vasopressin potentiated the antiproliferative effects of cAMP and IL-1beta through CaMKII activation.  相似文献   

12.
The steady state level of most cellular phosphoproteins is dependent on the relative catalytic activities of intracellular protein kinases and phosphatases. In adrenal cortex, ACTH acts through PKA activation and Ser/Tre phosphorylation. Phosphatases involved in this pathway are not completely described, particularly the role of phosphotyrosine protein phosphatase (PTP) activity on ACTH action. We investigated potential changes in PTPs activity in adrenal gland upon in vivo and in vitro PKA activation. In vivo ACTH stimulates cytosolic PTP activity (2-fold). Similar effect is detected by in vitro stimulation. In accordance with the effects of ACTH on PTP activity, cell permeable PTP inhibitors block ACTH stimulation on adrenal zona fasciculata (ZF) cells: ACTH (1 nM) = 108.2 +/- 3.5 ng corticosterone/10(5) cells vs. ACTH + phenylarsine oxide (2 nM) = 60 +/- 4 (P < 0.001) and ACTH + pervanadate (10 mM) = 68 +/- 2 (P < 0.01). These results are reproduced when cells are stimulated with cAMP. The inhibition is not observed when steroidogenesis is supported by 22(R)OH cholesterol. We describe, for the first time, a hormonal regulation of PTP activity. According to the effect of PTP inhibitors on steroid production activated by ACTH we propose that PTP activation is a crucial event in hormone action in the steroidogenic pathway. We also propose that PTP activity is located after PKA activation and prior to cholesterol transport to the inner mitochondrial membrane.  相似文献   

13.
14.
15.
Activation of the endogenous protein kinase Cs in human kidney fibroblast (293) cells was found in the present study to inhibit the subsequent ability of insulin to stimulate the tyrosine phosphorylation of an expressed insulin receptor substrate-1. This inhibition was also observed in an in vitro phosphorylation reaction if the insulin receptor and its substrate were both isolated from cells in which the protein kinase C had been activated. To test whether serine phosphorylation of the insulin receptor substrate-1 was contributing to this process, serine 612 of this molecule was changed to an alanine. The insulin-stimulated tyrosine phosphorylation and the associated phosphatidylinositol 3-kinase activity of the expressed mutant were found to be comparable to those of the expressed wild-type substrate. However, unlike the wild-type protein, activation of protein kinase C did not inhibit the insulin-stimulated tyrosine phosphorylation of the S612A mutant nor its subsequent association with phosphatidylinositol 3-kinase. Tryptic peptide mapping of in vivo labeled IRS-1 and the S612A mutant revealed that PMA stimulates the phosphorylation of a peptide from wild-type IRS-1 that is absent from the tryptic peptide maps of the S612A mutant. Moreover, a synthetic peptide containing this phosphoserine and its nearby tyrosine was found to be phosphorylated by the insulin receptor to a much lower extent than the same peptide without the phosphoserine. Activation of protein kinase C was found to stimulate by 10-fold the ability of a cytosolic kinase to phosphorylate this synthetic peptide as well as the intact insulin receptor substrate-1. Finally, cytosolic extracts from the livers of ob/ob mice showed an 8-fold increase in a kinase activity capable of phosphorylating this synthetic peptide, compared to extracts of livers from lean litter mates. These results indicate that activation of protein kinase C stimulates a kinase which can phosphorylate insulin receptor substrate-1 at serine 612, resulting in an inhibition of insulin signaling in the cell, posing a potential mechanism for insulin resistance in some models of obesity.  相似文献   

16.
It is well-established that in heart, both the L-type Ca2+ channel and the cystic fibrosis transmembrane conductance regulator Cl- channel are regulated by cAMP-dependent phosphorylation. However, it is not clear whether both of these channels are regulated in concert by protein kinase A (PKA) or whether there are mechanisms that independently control the phosphorylation of these two PKA targets. The purpose of this study was to compare the effects of various protein phosphatase and protein kinase inhibitors on these two ionic currents (ICa and ICl) in guinea pig ventricular myocytes to gain insight into these questions. We found that both the stimulation and washout of the effects of isoproterenol on ICl are about twice as fast as the effects on ICa, probably because the dephosphorylation reaction for ICl is faster than that for ICa. In contrast, inhibition of protein phosphatases with 10 microM microcystin stimulated both ICa and ICl, but the stimulation of ICl was much slower and smaller than the stimulation of ICa. The effect of microcystin was inhibited by staurosporine (Ki = 171.5 and 161 nM for ICa and ICl, respectively), suggesting that the stimulation was due to a kinase. The kinase was not protein kinase C (PKC) because it was not inhibited by the specific pseudosubstrate inhibitor of PKC, PKC(19-31), and it was not PKA because it was not inhibited by adenosine 3',5'-cyclic phosphorothioate. These results suggest that although both the Ca2+ and Cl- channels are regulated by cAMP-dependent phosphorylation, another protein kinase may also regulate these channels, and the kinetics of the response of the channels to phosphorylation can be modulated independently by protein phosphatases.  相似文献   

17.
We recently identified a region within the cytoplasmic C-terminal tail of the Na+/H+ exchanger NHE3 isoform (residues 579 to 684) which is essential for inhibition of transport activity by cAMP-dependent protein kinase (PKA) (Cabado, A. G., Yu, F. H., Kapus, A., Gergely, L., Grinstein, S., and Orlowski, J. (1996) J. Biol. Chem. 271, 3590-3599). To further define determinants of PKA regulation, six serine residues located in potential recognition sequences for PKA within, or adjacent to, this region (positions 552, 605, 634, 661, 690, and 691) were altered either independently or in various combinations using site-directed mutagenesis. Wild type and mutant NHE3s tagged with the influenza virus hemagglutinin epitope were stably expressed in exchanger-deficient Chinese hamster ovary cells (AP-1) for functional studies. Of the individual mutations examined, only substitutions at Ser605 or Ser634 affected sensitivity to forskolin, an activator of adenylate cyclase, although partial inhibition of NHE3 activity by forskolin remained. By contrast, simultaneous mutation of both these serines completely abolished cAMP-mediated inhibition of NHE3 without greatly affecting basal transport activity. Two-dimensional analysis of tryptic digests of immunoprecipitated NHE3 labeled in vivo with [32P]orthophosphate revealed several phosphopeptides under basal conditions. Phosphorylation was increased approximately 3-fold in one of these peptides following forskolin treatment, and this change was eliminated by mutation of residue Ser605. Thus, phosphorylation of Ser605 is essential for cAMP-mediated inhibition of NHE3. In addition, Ser634 is also required for the effect of cAMP, even though this residue does not become phosphorylated upon activation of PKA.  相似文献   

18.
Synthetic peptides derived from the endogenous protein kinase A inhibitor (PKI) offer a specific means of inhibiting cyclic AMP-dependent protein kinase A (PKA), but their use in whole cells is restricted by the plasma membrane. We have now modified PKI sequences by N-terminal myristoylation to enhance their membrane permeability, and have used the myristoylated (myr) peptides to investigate the role of PKA activation in glucose-induced insulin secretion from intact pancreatic beta-cells. The myristoylated PKI peptides, myr PKI14-22 and myrPKI6-22, were effective inhibitors in vitro of PKA activity extracted from rat islets of Langerhans. In experiments using intact islets, myr PKI14-22 caused a concentration-dependent inhibition of insulin secretion in response to the PKA activators dibutyryl cyclic AMP and forskolin, suggesting that it gained access to the cytosolic compartment of intact beta-cells and inhibited PKA in situ. However, these concentrations of myr PKI14-22 did not inhibit insulin secretion in response to glucose suggesting that the activation of PKA is not required for the initiation of glucose-induced insulin secretion.  相似文献   

19.
20.
The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号