首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Nusinsky I  Hardy AA 《Applied optics》2007,46(17):3510-3517
We investigate omnidirectional reflection from higher-order gaps in one-dimensional photonic crystals. Moreover, we present a designing criterion for omnidirectional reflection from several distinct gaps simultaneously, using only a single photonic crystal with a constant period. We show that for practical values of photonic crystals parameters, several relatively large omnidirectional gaps may be obtained. As an example, we demonstrate an omnidirectional reflector that exhibits two distinct wide omnidirectional ranges at near-infrared wavelengths. This omnidirectional reflector that operates in several ranges of wavelengths may have various potential applications.  相似文献   

2.
Abstract

It is shown, in the case of one-dimensional photonic crystals, that the transmission gaps are caused by the existence of resonance phenomena inside the layers which constitute the crystal. From a mathematical point of view, these resonances are associated with poles and zeros in the complex plane of the wavenumber k. Transmission gaps are located outside these resonance regions. A phenomenological formula allows us to represent quantitatively the transmission inside the gaps. Finally, a synthetic explanation of the properties of doped and non-doped crystals is proposed and it is shown that the transmission peaks inside the gaps of doped photonic crystals are caused by a shift of poles and zeros located inside the resonance regions of non-doped crystals.  相似文献   

3.
We describe a phenomenological theory of the phenomenon of binding observed both experimentally and numerically when particles are trapped by an interference system in order to make a structure close to a photonic crystal. This theory leads to a very simple conclusion, which links the binding phenomenon to the bottom of the lowest bandgap of the trapped crystal in a given direction. The phenomenological theory allows one to calculate the period of the trapped crystal by using numerical tools on dispersion diagrams of photonic crystals. It emerges that the agreement of our theory with our rigorous numerical results given in a previous paper [J. Opt A8, 1059 (2006)] is better than 2% on the crystal period. Furthermore, it is shown that in two-dimensional problems and s polarization, all the optical forces derive from a scalar potential.  相似文献   

4.
In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.  相似文献   

5.
The counterintuitive properties of photonic crystals, such as all-angle negative refraction (AANR) [J. Mod. Opt.34, 1589 (1987)] and high-directivity via ultrarefraction [Phys. Rev. Lett.89, 213902 (2002)], as well as localized defect modes, are known to be associated with anomalous dispersion near the edge of stop bands. We explore the implications of an asymptotic approach to uncover the underlying structure behind these phenomena. Conventional homogenization is widely assumed to be ineffective for modeling photonic crystals as it is limited to low frequencies when the wavelength is long relative to the microstructural length scales. Here a recently developed high-frequency homogenization (HFH) theory [Proc. R. Soc. Lond. A466, 2341 (2010)] is used to generate effective partial differential equations on a macroscale, which have the microscale embedded within them through averaged quantities, for checkerboard media. For physical applications, ultrarefraction is well described by an equivalent homogeneous medium with an effective refractive index given by the HFH procedure, the decay behavior of localized defect modes is characterized completely, and frequencies at which AANR occurs are all determined analytically. We illustrate our findings numerically with a finite-size checkerboard using finite elements, and we emphasize that conventional effective medium theory cannot handle such high frequencies. Finally, we look at light confinement effects in finite-size checkerboards behaving as open resonators when the condition for AANR is met [J. Phys. Condens. Matter 15, 6345 (2003)].  相似文献   

6.
We demonstrate that the width and spectral position of the band gap of opal photonic crystals can be controlled by varying the concentration of solution in the opal pores. An experimental technique is proposed which enables identification of both the first and second photonic band gaps in the reflection spectrum of opal. The ability to observe the second band gap allows a dispersion relation to be derived for the refractive index of the infiltrated substance. The calculations are performed using a model for a one-dimensional periodic layered medium with two refractive indices. We obtain an ω(k) dispersion relation and the reflection spectra of a photonic crystal in the [111] direction at different solution concentrations.  相似文献   

7.
三维光子晶体的制备技术研究进展   总被引:2,自引:0,他引:2  
张辉  赵晓峰  唐清 《功能材料》2003,34(2):118-120,125
光子晶体是周期性介电结构.它能象周期性原子结构中的电子禁带一样.产生光子禁带。自从1987年Yablonovitch提出光子晶体的概念以来,有关光子晶体的各种研究非常活跃。本文回顾了三维光子晶体的制备技术研究现状,旨在激发不同学科领域研究人员的想象力和创造力.使他们从一些可能的光子晶体制造途径中有所裨益.并将这种可能性转变为现实。  相似文献   

8.
Using the Dirichlet-to-Neumann map method and generalization of this method, we have been able to calculate the photonic band structure of two-dimensional (2D) metallodielectric photonic crystals composed of metal-coated circular dielectric rods. The rods are embedded in an air background with a square array. We are interested in considering transverse electric (TE) mode of electromagnetic waves. The resulting band structures show the existence of photonic band gaps as well as some flat band regions. We theoretically study the effect of the dielectric constant and radius of the dielectric core on the photonic band structures. There are some interesting results compared to the case of solid metallic rods (without dielectric core) such as appearing the new photonic band gaps and a flat band region with the characteristic of cavity modes.  相似文献   

9.
We have measured visible to near-UV reflection spectra of opal photonic crystals infiltrated with ferroelectrics: barium titanate, sodium nitrite, potassium iodate, and triglycine sulfate. An experimental procedure has been developed for the infiltration of various ferroelectrics into opal pores through laser ablation and laser implantation. Using a fiber-optic probe, we were able to analyze surface reflection spectra of photonic crystals with a 0.2-mm resolution. A deuterium lamp was used as a broadband UV source, which allowed us to observe both the first and second [111] photonic band gaps in the reflection spectrum of opal crystals.  相似文献   

10.
We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals.  相似文献   

11.
In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.  相似文献   

12.
Reflection spectra of the (111) growth surface of opal photonic crystals differing in silica sphere diameter have been measured under illumination with narrowband ultraviolet and violet light from a laser and light-emitting diodes and with broadband light from a halogen lamp. We have found narrow strong bands differing in spectral position from the light from the short-wavelength excitation sources. The spectral position of these bands corresponds to that of photonic band gaps and is independent of excitation wavelength. The silica sphere diameter has no effect on the shape of the reflection band, and its position always correlates with that of the band gap of the opal. The present results demonstrate that exposure of a photonic crystal to short-wavelength radiation leads to conversion of the radiation to the spectral range of the band gap. The microscopic mechanism of the conversion process may involve three-photon parametric processes and amplification of the broadband photoluminescence due to structural defects in the silica matrix. Our results open up the possibility of creating new types of optically pumped solid gain media based on opal photonic crystals.  相似文献   

13.
Photonic crystal heterostructures constituting of two photonic crystals with different lattice constants are fabricated using the modified self-assembly method and their structural and optical properties are investigated. The results show that these photonic crystal heterostructures of high quality possess deep photonic band gaps and steep photonic band edges in their transmission spectra. Deep double photonic band gaps, steep photonic band edges and high transmittance in the pass band show good ordering of the heterostructure and may offer a probability for studying late-model ultra-fast all-optical switches.  相似文献   

14.
In this study, the transmission properties of photonic crystals with multiple periodic defects are studied by using a full-wave approach. The high convergence rate of the employed technique has allowed us to accurately and efficiently predict the filtering behavior of the considered structures. Results are presented for both TE and TM polarizations, showing the transmission efficiencies as a function of the involved parameters. In order to give more physical insight, a comparison with a simpler one-dimensional model has been provided. From our numerical investigation, it turns out that, by suitably configuring the photonic bandgap, it is possible to shape the filtering properties in TE polarization in a simple and versatile way.  相似文献   

15.
Miyamaru F  Hangyo M 《Applied optics》2004,43(6):1412-1415
The polarization characteristics of a terahertz (THz) wave transmitted through two-dimensional (2-D) metallic photonic crystals (MPCs) are investigated. The 2-D MPCs studied in this paper are metal slabs perforated periodically with circular holes. We measured the polarization characteristics of the THz wave using a THz time-domain spectroscopic system with wire grid polarizers in the time and frequency domains. The linearly polarized incident THz wave changes its polarization direction and becomes elliptic after it transmits through the sample. This phenomenon is highly sensitive to the incident angle. It is shown that the frequency range at which the polarization rotation occurs is related to the lattice constant of a photonic crystal, indicating the importance of photonic band modes of the 2-D MPC in the mechanism of the phenomenon.  相似文献   

16.
The 12-fold symmetric quasicrystal shows great potential as a novel photonic band gap (PBG) structure exhibiting a band gap for relatively low filling fractions and dielectric contrasts. The band gaps are highly homogeneous with respect to the angle of incidence of the incoming light due to the crystal's high degree of rotational symmetry. These crystals have been analyzed using a finite element method developed specifically for modelling PBG structures. We present and discuss quasicrystal structures and their optical properties.  相似文献   

17.
He L  Hu Y  Kim H  Ge J  Kwon S  Yin Y 《Nano letters》2010,10(11):4708-4714
We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.  相似文献   

18.
可见光区一维光子晶体纳米膜偏振带通滤波器的设计   总被引:2,自引:0,他引:2  
汤炳书 《光电工程》2007,34(5):33-37
应用一维时域有限差分方法研究各种条件下一维二元光子晶体的偏振带通滤波特性,具体数值分析了掺杂层位置、厚度、电磁参数、入射角度四种因素对偏振滤波特性的影响.数值结果表明传统意义上的光学多层膜是一维二元光子晶体在光学厚度满足四分之一波长时的特例;可见光区的偏振滤波器的窄带滤波特性与掺杂层的位置有关,掺杂层在整个膜中间位置时偏振分离效果好,掺杂层的厚度与周期层厚度相差越大则分离效果越好,两组元折射率相差越大越易形成禁带,入射角越大禁带越窄,偏振的分离度越好.特别是P偏振局域模更多;在线度参数相同的情况下介质电磁参数对禁带有较大影响,禁带只有在两组元折射率相差越大才能形成,介质损耗同样是不可忽略的因素;光源的入射角对禁带有重大影响.本文的研究对光子器件的设计有一定的指导作用.  相似文献   

19.
A tripod-type system driven by a weak linearly polarized probe light and a π-polarized standing-wave control light is studied. The results show that double photonic band gaps (PBGs) can be obtained at two different frequencies due to Zeeman splitting induced by an external magnetic field. This allows us to selectively manipulate the σ± components of the probe light, which exhibits polarization selective features. These peculiar features can be employed to devise schemes for a polarization beam splitter and polarization selective routing. Furthermore, the dependence of the gap position on the magnetic field provides an additional control of the PBGs structure. Thus, double tunable PBGs can be achieved.  相似文献   

20.
We use first order perturbation theory to study the effect of surface plasmon polaritons on the photonic band structure of plasmonic photonic crystals. Our results are based on a simple numerical tool that we have developed to extend the standard frequency domain methods to compute the photonic band structure of plasmonic photonic crystals. For a two-dimensional honeycomb photonic crystal with a lattice constant of 500 nm placed on an aluminium substrate, we show that the band gap for TM modes is enhanced by 13%. Thus a slight variation in the effective dielectric function results in a plasmonic band structure that is not scale-invariant, which is reminiscent of the inherent non-linear properties of the effective dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号