首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本文较简要地介绍了利用在化学热处理前后进行的热循环处理细化20X钢的晶粒、提高其机械性能的研究成果。以5℃/min的速度加热到Ac_3以上5~10℃,随后缓慢冷却至Arl以下5~10℃,经过3~5次循环处理后,20X钢奥氏体晶粒可以细化至№11,最后空冷后其冲击韧性较经正火和快速加热循环处理的20X钢高50%~1.5倍。  相似文献   

2.
细化晶粒是一种提高材料强度和塑性的有效方法.将20CrMnTi钢在Ac1和Ac3温度范围内进行了3道次变温快速循环加热-冷却处理,晶粒尺寸由初始的36.9 μm细化到约5 μm,其布氏硬度值由初始的145.7提高到298.3.结果表明:经过3道次的循环相变处理后,由于形核率的提高,晶粒长大速度的降低和组织遗传性被破坏,...  相似文献   

3.
运用正交试验的方法,对工业挤压态AZ3l镁合金在不同的加热温度、保温时间和冷却方式的条件下进行了预处理,研究了预处理工艺对其组织和晶粒尺寸的影响。实验表明,预处理过程中发生的静态回复与再结晶可以达到细化晶粒的目的。在预处理方案为加热温度325℃、保温时间20min、空冷的条件下,其晶粒尺寸由原始的45.4μm细化为26.3μm;晶粒尺寸随加热温度的提高及保温时间的延长均先细化后长大,而冷却方式对晶粒尺寸的影响较小。  相似文献   

4.
采用磁悬浮感应熔炼铸造方法制备了Ti-46Al-2Nb-2Cr(at%)合金,通过显微组织观察,研究了近空冷及循环热处理条件下,粗晶铸造Ti-Al合金的显微组织细化.结果表明,通过近空冷方式可获得平均晶粒度为500 μm的全层状组织片,然后通过在α+β双相区的循环热处理可以将粗大的层片状组织细化成平均晶粒度为30 μm的全层状组织.  相似文献   

5.
低碳钢奥氏体晶粒尺寸的控制   总被引:15,自引:0,他引:15  
杨王玥  胡安民  孙祖庆 《金属学报》2000,36(10):1050-1054
分别采用高温形变再结晶和低温变形后快速加热冷却等两种方法获得尺寸不同的低碳钢奥氏体晶粒组织,通过控制形变温度、形变量、应变速率及变形道次等工艺参数。低碳钢奥氏体高温形变动态再结晶可使晶粒细化到15-20μm左右,奥氏体动态再结晶晶粒尺寸取决于Zener-Hollomon(Z)参数,提高应变速率及降低形变温度都有利于Z参数增大,流变相力峰值较高,奥氏体动态再结晶晶粒减小,通过奥氏体化合淬火-650℃  相似文献   

6.
在获得无碳化物贝氏体/马氏体复相钢奥氏体晶界侵蚀方法的基础上,利用电致加热循环淬火方法对无碳化物贝氏体/马氏体复相钢进行组织超细化处理,研究了奥氏体化温度、加热速率、循环次数和保温时间对钢的组织和原奥氏体晶粒的影响。实验结果表明:以100℃/s的加热速度加热到910~920℃淬火,循环3次,前两次淬火不保温,最后一次保温30 s,可得到平均晶粒度为3.2μm,超高周疲劳性能优异的超细化无碳化物贝氏体/马氏体复相钢。  相似文献   

7.
本文对CrWMn钢采用快速加热循环淬火法实现了奥氏体晶粒的超细化。该钢的原始组织经830~840℃加热淬火循环2~3次可使晶粒细化到15级以上。经超细化处理后再进行正常的最终热处理与其直接进行最终热处理相比,抗弯强度显著提高,弯曲挠度与冲击韧性也有所提高,从而证明了,快速加热循环淬火法是该钢强韧化的有效途径之一。  相似文献   

8.
张明亚 《钢管》2014,(4):18-22
热轧无缝钢管通过中频感应加热进行循环加热+淬火工艺处理后,基体内的组织将发生多次相变,从而使铁素体以及奥氏体淬火后得到的马氏体晶粒均得以细化。通过循环热处理工艺得到基体为铁素体+马氏体组织的超细晶双相钢,且多次循环后双相钢内的铁素体晶粒可细化到1μm左右。  相似文献   

9.
一、绪言一般,金属材料的强度和韧性是两个互相矛盾的性能,但晶粒超细化处理是使强度和韧性能得到改善的一种手段。目前,可用许多方法获得超细晶粒,其中之一就是Grange等人发明的快速循环热处理法,既将钢快速加热到较低的奥氏体化温度,进行快速冷却,反复循环两次以上的超细化方法。这种方法的超细化程度受原始  相似文献   

10.
杨波  孙健  郭宏丽 《金属热处理》2021,46(4):118-121
采用控制轧制-控制冷却-淬火-回火工艺制备20 mm 厚的Ti微合金化中碳钢板,研究了控制冷却工艺(冷却速度)对该钢有效晶粒尺寸和析出相的影响,并探讨了其强韧化机理。结果表明:冷却速度越快,有效晶粒尺寸越小,马氏体板条宽度越窄,含Ti析出相越细小,使其兼具高强度和良好的塑性韧性。主要是由于快速冷却保留了轧制时获得的晶体缺陷和形变能,使再加热奥氏体细化,而且快速冷却抑制了Ti在冷却过程中析出,使Ti处于过饱和状态,再加热过程中逐渐析出细小的含Ti析出相,能更有效地阻止奥氏体晶粒长大。有效晶粒细化以及纳米级含Ti析出相使该钢板具有良好的力学性能。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号