首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用磁选工艺改善梅山铁矿铁精矿的质量   总被引:3,自引:0,他引:3  
洪家凯 《矿冶工程》1997,17(4):28-31
梅山铁矿所产铁精矿因含磷、硫杂质高, 无法满足冶炼的要求。采用磁选工艺处理脱硫铁精矿能有效降低铁精矿的磷、硫含量以及铁精矿的粘性。工业试验结果表明, 对于含铁52.77 %, 磷0.399 %, 硫0.440%的脱硫铁精矿, 经过弱磁- 强磁流程选别, 可获得含铁56.08 %, 磷0.246 %, 硫0.29%的自熔性铁精矿, 铁回收率为94.51 %。  相似文献   

2.
安徽某铁矿选矿工艺试验研究   总被引:2,自引:1,他引:1  
安徽某铁矿全铁含量30.14%,其中磁性铁13.40%,硅酸铁13.87%。通过详细的选矿工艺研究,试验最终确定采用-2mm原矿预选抛尾单一弱磁流程,得铁精矿品位65.60%、对全铁回收率47.42%的指标。进一步将铁精矿通过反浮选方法探索生产超级铁精矿,最终获得部分品位70.61%、回收率17.63%的超级铁精矿和部分品位64.16%、回收率29.79%的普通铁精矿。  相似文献   

3.
大红山铁矿所生产的50%品级铁精矿现状为直接落地销售,为使经济效益最大化,对50%品级铁精矿进行提质降硅,作为铁精矿并入总精矿再进行销售;对50%品级铁精矿采用"一粗一精一扫"的闭路正浮选流程,最终所得精矿铁品位达到57.79%,硅品位由14.22%降低至8.09%,可作为铁精矿并入总精矿再进行销售。  相似文献   

4.
山东某普通铁精矿TFe品位65.46%,主要脉石成分SiO_2,有害元素S、P微量。铁主要以磁铁矿的形式存在,分布率占96.40%。为利用该普通铁精矿制备超级铁精矿,对其进行了系统的选矿工艺研究,最终确定采用预先抛尾—阶段磨矿阶段磁选—反浮选工艺流程,并获得了TFe品位为71.88%、回收率为63.98%的超级铁精矿产品,其中二氧化硅含量为0.30%、酸不溶物含量为0.19%,其他杂质含量均在达标范围内。采用上述工艺流程处理该普通铁精矿获得了指标理想的超级铁精矿,对类似性质的铁精矿制备超级铁精矿产品具有借鉴意义。  相似文献   

5.
为了优化带式机球团生产的原料结构,进行了球团生产中大比例配加赤铁精矿的实验研究和工业试验,结果表明,大比例配加赤铁精矿后,生球指标变差; 随着赤铁精矿配比提高,黏结剂配比需要适当增加。赤铁精矿B应用于带式机球团生产的比例可以提高到55%,45%磁铁精矿A配加55%赤铁精矿B的适宜黏结剂配比为0.7%~0.8%,最佳焙烧制度为预热温度935~950 ℃、焙烧温度1 235~1 250 ℃。赤铁精矿C同比替代赤铁精矿B应用于球团生产的适宜比例为10%,50%磁铁精矿A配加40%赤铁精矿B和10%赤铁精矿C的适宜黏结剂配比为0.8%~0.9%,最佳焙烧制度为预热温度960~975 ℃、焙烧温度1 255~1 270 ℃。工业试验结果表明,通过优化球团生产工艺参数,大比例配加低价赤铁精矿所生产球团的冶金性能可以满足高炉冶炼要求。  相似文献   

6.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

7.
某铁矿选矿厂所产铁精矿含硫超过0.3%,严重影响铁精矿质量,为了提高该铁精矿的市场竞争力,对该磁铁矿进行了反浮选脱硫试验研究。试验结果表明:以CYH-01为活化剂,丁基黄药与丁铵黑药组合为捕收剂,经过一段开路反浮选,获得了产率为96.54%、铁品位为66.68%、铁回收率为97.14%、含硫0.074%的铁精矿。  相似文献   

8.
内蒙某铁矿石中硫含量为3.93%,针对该含硫铁矿石进行了旨在降低铁精矿中硫含量的选矿试验研究,试验采用磁选-浮选联合工艺流程。结果表明:在原矿磨至细度-0.074 mm 55%的条件下,通过弱磁选可获得铁品位66.52%、硫含量3.44%的铁精矿;对该铁精矿再磨,再磨细度-0.074 mm 65%的条件下,以丁黄药作为捕收剂,硫酸和硫酸铜作为调整剂,采用一次粗选四次精选反浮选工艺处理该铁精矿,铁精矿中硫含量可降至0.35%。  相似文献   

9.
以辽宁某地TFe品位67.48%的商品铁精矿为原料进行了超级铁精矿制备试验。采用搅拌磨替代球磨机作为磨矿设备解决了铁精矿细磨过程中能耗高、磨矿效率低的问题。根据原料性质,采用再磨-磁选-反浮选工艺可获得TFe品位72.14%、回收率52.46%、SiO_2含量0.20%的超级铁精矿。  相似文献   

10.
从硫铁矿烧渣中回收铁精矿,可实现废弃硫铁矿烧渣的再利用。试验采用磁选法回收铁,采用浮选法去除铁精矿中的硫,重点研究了采用浮选法脱除烧渣中硫的可行性。实验用烧渣含铁50.12%,含硫1.48%,经磁选后,获得含铁65.44%、含硫0.96%的铁精矿。浮选脱硫实验的结果表明:一次浮选pH为5.5,二次浮选pH为9.5,矿浆浓度20%~30%,磨矿细度-0.074 mm含量在80%左右的条件下,脱硫效果较好;浮选温度对脱硫效果的影响小,一般可取为常温。通过磁选法获得铁精矿后,再用浮选法脱除铁精矿中的硫,可获得含铁65.35%、含硫0.39%的铁精矿。  相似文献   

11.
某含细粒磁黄铁矿铁锌矿石选矿工艺研究   总被引:1,自引:0,他引:1  
某铁锌矿石中可选矿回收的目的矿物为磁铁矿和闪锌矿,但部分闪锌矿中包裹有磁性较强、粒度较细的磁黄铁矿,处理不当易导致铁精矿中硫含量超标或影响锌精矿品位。为了给该矿石的开发提供技术支撑,对其进行了选矿工艺研究。结果表明:采用先浮选锌后弱磁选铁的原则流程,可以解决铁精矿硫超标问题;将锌粗精矿再磨至-400目占85%后再精选,可以保证锌精矿品位。试验最终获得了锌品位为48.74%、锌回收率为86.92%的锌精矿和铁品位为63.29%、铁回收率为90.58%、硫含量为0.29%的铁精矿。  相似文献   

12.
河北某铁矿混磁精反浮选精矿指标较差,主要是由于铁矿物单体解离不充分和反浮选效果不理想造成。为提高反浮选提铁降硅效果,改善分选指标,对现场混磁精进行了反浮选工艺技术研究。结果表明:在磨矿细度为-0.043 mm占80.48%的情况下,采用1粗1精2扫、中矿顺序返回流程处理,最终获得了铁品位为63.98%、铁回收率为81.60%的铁精矿;与现场工艺相比,新工艺增加了混磁精再磨作业,精选和扫选次数各减少了1次,精矿铁品位和铁回收率分别提高了1.70和11.01个百分点,选矿指标改善显著。  相似文献   

13.
分别采取舞阳矿业有限责任公司八台铁矿选矿厂弱磁粗选精矿、高频细筛筛下产物及最终精矿样品进行实验室磁筛精选试验,结果显示:弱磁选粗精矿或高频细筛筛下产物隔除+0.3 mm粗颗粒后用磁筛进行1次精选,可直接获得铁品位、作业产率、铁作业回收率分别在66%、82%、94%以上的合格铁精矿;原最终精矿隔除+0.3 mm粗颗粒后用磁筛进行1次精选,铁品位可由65.5%左右提高到近68%。这说明磁筛若应用于八台铁矿选矿厂,将在简化流程、增产节能、提高铁精矿质量等方面取得显著成效。  相似文献   

14.
针对酒钢镜铁山粉矿强磁选工艺存在的精矿铁回收率和品位均较低的问题,东北大学在对强磁预富集精矿进行工艺矿物学分析的基础上,进行了悬浮磁化焙烧扩大试验研究。结果表明:酒钢粉矿强磁预富集精矿TFe品位为39.02%,预富集精矿含铁矿物主要为赤铁矿和菱铁矿,铁分布率分别为67.81%、28.36%,脉石矿物主要为石英、白云石和重晶石;粉矿采用强磁选抛尾-悬浮焙烧-磁选-反浮选新工艺,最终获得了TFe品位60.67%、SiO2含量4.52%的合格铁精矿,铁回收率为76.27%。与原单一强磁选工艺相比,新工艺的精矿铁品位提高了16.11个百分点,SiO2含量降低了6.83个百分点,铁回收率提高了14.43个百分点,精矿指标有了较大幅度的提高,为下一步粉矿资源的高效利用提供了技术依据。  相似文献   

15.
针对现阶段高铝铁矿石选别后铁精矿中含铝过高的问题,东北大学研制了一种新型、高效的两性螯合捕收剂DTA-2,以某悬浮焙烧后磁选铁精矿为研究对象,进行提铁降铝反浮选试验。结果表明:在常温,自然pH条件下,以DTA-2为捕收剂,淀粉为抑制剂,经1粗1精1扫反浮选流程试验,可以获得精矿TFe品位66.80%、Al2O3品位3.26%的指标。对浮选精矿产品进行分析发现:褐铁矿内部结构相对松散,其中包裹脉石矿物较多;粒度较大氧化铁颗粒周围黏连微粒(多小于1 μm)以氧化铝为主的脉石矿物,微细粒的铁氧化物和以氧化铝为主的脉石矿物集合成磁性聚合体,造成精矿含杂;粒度较粗的氧化铝矿物颗粒内部有微粒(小于1 μm)弥散状氧化铁颗粒,磁选精矿中石英、高岭石、云母、长石矿物与氧化铁矿物连生或微粒单体夹带进入浮选精矿造成精矿杂质含量较高。通过浮选的方法解决了悬浮焙烧后磁选铁精矿含铝过高的实际问题。试验结果对高铝铁矿石的提铁降铝研究具有借鉴意义。  相似文献   

16.
齐大山铁矿矿石铁品位为31.56%,其中FeO含量为6.59%,主要铁矿物为赤铁矿和磁铁矿,原采用阶段磨矿-粗细分级-重选-磁选-阴离子反浮选工艺,对微细粒铁矿物回收效果差。为改善细粒铁矿物的回收效果,提高选厂经济效益,对齐大山铁矿石开展了选矿工艺优化研究。结果表明:当一段磨矿细度为-0.074 mm占65%,二段磨矿细度为-0.074 mm占90%时,采用阶段磨矿-粗细分级-阶段重选-磁选-阴离子反浮选流程处理矿石,可以获得铁品位和回收率分别为66.80%和82.90%的综合精矿,其中重选精矿占比高达70.21%,弱磁选精矿占比为7.57%。一段螺旋溜槽粗选尾矿直接给入磁选-反浮选,能有效避免微细粒级铁矿物的损失;降低旋流器分级作业沉砂粒度,增加重选作业处理量;增加弱磁精选作业,直接产出最终精矿等措施,对降低浮选作业药剂用量和最终选矿成本具有重要意义。试验成果对实现鞍山式铁矿石的高效分选具有指导意义。  相似文献   

17.
为了探究通过提高磨矿细度降低河北柏泉磁选铁精矿钛含量的可行性,采用搅拌磨细磨(超细磨)-弱磁选工艺对试样进行降钛研究,在磨矿细度d90为34.7 μm,弱磁选磁场强度为83.6 kA/m的条件下,铁精矿TFe品位可由63.39%增加到65.48%,TFe品位达到一级铁精粉要求,且TFe回收率为97.85%,但铁精矿中杂质TiO2含量仅能降低1.04个百分点。通过XRD分析以及工艺矿物学分析查明,试样中钛主要存在于钛磁铁矿中;搅拌磨细磨(超细磨)-弱磁选工艺可以脱除铁精矿中的钛铁矿和钛赤铁矿,但是钛磁铁矿与磁铁矿属于类质同象,物理化学性质非常相近,难以通过磁选分离,这是该铁精矿的钛元素难以大量脱除的原因。研究结果表明,此类岩浆岩型高钛铁精矿品质较优,但钛不能通过选矿脱除,可用作其他低钛铁精粉高炉冶炼的配料。  相似文献   

18.
太和铁矿矿石为钒钛磁铁矿,现场选铁采用两段阶段磨矿、阶段磁选工艺流程,二段再磨量大,成本高,且最终精矿铁品位仅能基本满足大于55%的质量要求。在实验室模拟现场流程制备出一段精矿,采用磁筛对其进行再磨后和再磨前的精选试验,考察利用磁筛提高最终精矿铁品位或减少二段再磨量的可能性。结果表明:再磨后的一段精矿经磁筛精选,最终精矿铁品位未能提高;一段精矿再磨前直接经磁筛精选,可预先获得一部分铁品位为56%以上的合格精矿,从而减少约60%的再磨量。  相似文献   

19.
铁精矿品位的准确预测对铁矿选矿厂的生产和管理具有重要意义。为解决选矿厂生产过程中具有随机波动性的铁精矿品位预测问题,提出一种基于线性变换法的无偏灰色GM(1,1)铁精矿品位预测模型。通过采用一种线性变换方法降低铁精矿品位数据序列的波动干扰,将随机波动数据序列转换为单调增长的数据序列,然后将变换后铁精矿品位数据序列代入无偏灰色GM(1,1)模型以实现铁精矿品位预测模型的建模,最后将该预测模型用于两组铁精矿品位数据序列进行了验证。结果表明,基于线性变换的无偏灰色GM(1,1)铁精矿品位预测模型在预测精度和预测性能上优于两个改进的GM(1,1)预测模型,其预测精度均为一级,预测的最小相对误差为0.2%,平均绝对误差均小于1%,模型具有较好的应用性和有效性,为短期预测铁精矿品位提供了一种新途径。  相似文献   

20.
根据包钢选矿厂选矿流程中钍的走向,对弱磁、强磁铁精矿分别进行了降钍试验研究。结果表明,在原矿磨矿粒度-0.074mm占93.5%条件下,对弱磁铁精矿采用水玻璃、SLM药剂,对强磁铁精矿采用水玻璃、H205、A5、A4药剂浮选,可有效脱除铁精矿中的含钍矿物,使最终铁精矿的钍含量降至0.0075%以下。A5、A4药剂的使用,大幅度降低了H205捕收剂的用量,使降钍工艺的工业应用成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号