首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel isolated high voltage‐boosting converter, derived from the traditional forward converter, is presented in this paper. As compared with the traditional forward converter, the demagnetizing winding of the transformer in the proposed converter is used not only to demagnetize but also to improve the voltage conversion ratio. Therefore, the duty cycle is not limited, and the utilization of the transformer, also called coupled inductor, can be increased also. Furthermore, the proposed converter maintains the advantage of possessing a non‐pulsating output current, leading to a small output voltage ripple. Moreover, by applying one additional voltage‐boosting winding to the transformer, the voltage conversion ratio can be significantly improved. In addition, an active clamp circuit is employed in the proposed converter to reduce the voltage stress of the main switch, caused by the leakage inductance in the transformer, and the switches can achieve zero‐voltage switching. Finally, the analysis of operating principles, choice of the turns, turns ratio, core size, and each wire size of the coupled inductor are described in detail, and the experimental results with a prototype with 12‐V input voltage, 100‐V output voltage, and 100‐W output power are provided to verify the feasibility and effectiveness of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a high step‐up converter, which utilizes a three‐winding coupled inductor and a rectified voltage‐doubler circuit to obtain high step‐up gain for fuel cells. The proposed converter functions as an active‐clamp circuit, which relieves large voltage spikes across the power switches. Thus, power switches with low‐voltage‐rated can be utilized to reduce conduction losses and circuit cost. Energy stored in leakage inductances of the coupled inductor is recycled to the output terminal, resulting in efficiency improvements. In addition, the coupled inductor in the presented converter can also have extra windings in order to achieve higher voltage gain. Finally, a prototype circuit with an input voltage of 60 V and an output voltage of 380 V is developed for a 1000 W‐rated fuel cell power‐generation system to validate its performance, and experimental waveforms and measured efficiency under different input voltages and output power level are demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a non‐isolated high step‐up dc‐dc converter based on coupled inductor is proposed. The proposed converter can be used in renewable energy applications. In suggested converter, the high voltage is achieved using 3‐winding coupled inductor, which leads to low voltage rate of the switch. A clamp circuit is used to recycle the leakage inductance energy. Also, the clamp circuit prevents the creation of voltage spikes on semiconductor devices and causes the voltage stress of elements are limited to less than the output voltage. The presented theoretical analyses show that the operation of suggested converter in continuous conduction mode needs to small magnetic inductor. Therefore, the size of coupled inductor's core is reduced, and so the size and cost of presented converter will be decreased. Analysis of the proposed converter is provided with laboratory results to verify its performance.  相似文献   

4.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, an extensible 2‐phase interleaved high step‐up converter with automatic current balance is presented. This converter uses coupled inductors and energy‐transferring capacitors to improve the voltage gain of the traditional 2‐phase interleaved boost converter as well as employs these energy transferring capacitors to do automatic current balance. Furthermore, the voltage gain can be enhanced not only by adjusting the turns ratio but also by increasing the numbers of phases, diodes, and energy‐transferring capacitors. Therefore, it can be used in high input current and high step‐up voltage applications. In this paper, the basic operating principles of the proposed converter are described and analyzed, and finally, its effectiveness is demonstrated by experiment. In addition, the field‐programmable gate array, named EP13T100C8N and manufactured by Altera Co, is used as a control kernel, and an experimental prototype, with input voltage of 12 V, output voltage of 200 V, and rated output power of 200 W, is given to provide the effectiveness of the proposed converter.  相似文献   

6.
This paper proposes a novel nonisolated single‐switch cascaded high step‐up converter. The converter consists of coupled inductors, a clamp circuit, and cascaded capacitors to achieve high step‐up voltage output. Only one switch is used in the proposed converter; the switch can reduce cost efficiently and simplify the control of the proposed converter. The converter also possesses an energy‐recycle mechanism for recycling the spike energy of a leakage inductor. In addition, a clamp circuit is used to reduce voltage‐stress across the switch, and a cascaded design is used to reduce voltage‐stress across diodes and output capacitor. Thus, the proposed converter can select a low‐voltage stress switch for reducing circuit loss and improving the efficiency of the converter. Finally, in this study, a 400‐W nonisolated cascaded high step‐up converter was implemented, of which the input and output voltages are 48 and 400 V, respectively. A microcontroller dsPIC30F4011 was used to control the converter and verify system effects and feasibility. The maximum efficiency of the proposed converter is 95% and the efficiency under a full load is 93%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel single switch two diode wide conversion ratio step down/up converter is presented. The proposed converter is derived from the conventional single‐ended primary inductor converter (SEPIC) topology, and it can operate as a capacitor‐diode voltage multiplier, which offers simple structure, reduced electromagnetic interference (EMI), and reduced semiconductor voltage stress. The main advantages of the proposed converter are the continuous input/output current, higher voltage conversion ratio, and near‐zero input and output current ripples compared with the conventional SEPIC converter. The absence of both a transformer and an extreme duty cycle permits the proposed converter to operate at high switching frequencies. Hence, the overall advantages will be: higher efficiency, reduced size and weight, simpler structure and control. The theoretical analysis results obtained with the proposed structure are compared with the conventional SEPIC topology. The performance of the proposed converter is verified through computer simulations and experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a two‐transformer active‐clamping zero‐voltage‐switching (ZVS) isolated inverse‐SEPIC converter, which is mainly composed of two active‐clamping ZVS isolated inverse‐SEPIC converters. The proposed converter allows a low‐profile design for liquid crystal display TVs and servers. The presented two‐transformer active‐clamping ZVS isolated inverse‐SEPIC converter can equally share the total load current between two secondaries. Therefore, the output inductor copper loss and the output diode conduction loss can be decreased. Detailed analysis and design of this new two‐transformer active‐clamping ZVS isolated inverse‐SEPIC converter are described. Experimental results are recorded for a prototype converter with an AC input voltage ranging from 85 to 135 V, an output voltage of 12 V and a rated output current of 13.5A, operating at a switching frequency of 65 kHz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes an active‐clamping flyback converter using an integrated transformer. The proposed converter is composed of two active‐clamp flyback converters. The presented converter can balance the total load current between secondary sides of two transformers so that the rectifier diode conduction loss is reduced. Also, the main switch of one converter is the auxiliary switch for the other converter, so that only two switches are required and both can achieve zero‐voltage‐switching operation. The two transformers are integrated into one magnetic core; therefore, the volume and copper loss of transformer can be reduced. Detailed analysis and design of this integrated magnetic active‐clamping flyback converter are described. Experimental results are recorded for a prototype converter with an AC input voltage ranging from 85 to 135 V, an output voltage of 24 V and an output current of 5 A, operating at a switching frequency of 100 kHz. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a new nonisolated free ripple input current bidirectional dc‐dc converter with capability of zero voltage switching (ZVS) is proposed. The free ripple input current condition at low voltage side is achieved by using third winding of a coupled inductor and a capacitor for the whole range of duty cycles. In the proposed structure, the voltage conversion ratio can be more increased by adding the turn ratio of the second winding of the coupled inductor for the whole range of duty cycles. By adjusting the value of an auxiliary inductor in the topology of the converter, according to the power, the ZVS operation of the implemented 2 switches can be achieved throughout the whole power range. The mentioned features of proposed converter are validated theoretically for both boost and buck operations. In this paper, the proposed converter is analyzed for all operating modes. Moreover, all equations of the voltages and currents of all components, voltage conversion ratio, the required conditions for ZVS operation of switches, and also required conditions for canceling input current ripple at low voltage side are obtained. Finally, the performance of the proposed converter is reconfirmed through experimental and EMTDC/PSCAD simulation results.  相似文献   

12.
A new type of three‐phase quasi‐Z‐source indirect matrix converter (QZS‐IMC) is proposed in this paper. It uses a unique impedance network for achieving voltage‐boost capability and making the input current in continuous conduction mode (CCM) to eliminate the input filter. The complete modulation strategy is proposed to operate the QZS‐IMC. Meanwhile, a closed‐loop DC‐link peak voltage control strategy is proposed, and the DC‐link peak voltage is estimated by measuring both the input and capacitor voltages. With this proposed technique, a high‐performance output voltage control can be achieved with an excellent transient performance even if there are input voltage and load current variations. The controller is designed by using the small‐signal model. Vector control scheme of the induction motor is combined with the QZS‐IMC to achieve the motor drive. A QZS‐IMC prototype is built in laboratory, and experimental results verify the operating principle and theoretical analysis of the proposed converter. The simulation tests of QZS‐IMC based inductor motor drive are carried out to validate the proposed converter's application in motor drive. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐efficiency zero‐voltage‐zero‐current‐switching DC–DC converter with ripple‐free input current is presented. In the presented converter, the ripple‐free boost cell provides ripple‐free input current and zero‐voltage switching of power switches. The resonant flyback cell provides zero‐voltage switching of power switches and zero‐current switching of the output diode. Also, it has a simple output stage. The proposed converter achieves high efficiency because of the reduction of the switching losses of the power switches and the output diode. Detailed analysis and design of the proposed converter are carried out. A prototype of the proposed converter is developed and its experimental results are presented for validation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes a new single‐phase buck‐boost power‐factor‐correction (PFC) converter with output‐voltage, ripple reducing operation. The converter consists of a conventional buck‐boost PFC converter and an additional switch to obtain a freewheeling mode of the dc inductor current, and is operated by two modulators. The first modulator controls the buck‐boost switch to obtain PFC. The other modulator controls the square value of the instantaneous dc inductor current to perform the output‐voltage‐ripple‐reducing operation. In the two modulations, the time integral value of the input and output currents in each modulation period are controlled directly and indirectly, respectively. Thus, modulation errors or undesirable distortions of the input current and output voltage ripple are eliminated even if the dc inductor current produces large ripple in a low‐frequency range. The theories and combination techniques for the two modulators, implementation, and experimental results are described. © 1998 Scripta Technica, Electr Eng Jpn, 126(2): 56–70, 1999  相似文献   

15.
A 2‐channel LED driver is presented herein, which possesses non‐pulsating input current and automatic current sharing. There are 4 features in the proposed LED driver. First, due to an input inductor, the input current is non‐pulsating, which makes the life of the renewable energy module or input capacitor longer. Second, each coupled inductor winding has a capacitor connected in series. Therefore, the dc magnetizing bias current is zero, and this can improve the iron core utilization, making the core loss and size reduced. Third, the number of LED channels can be extended by increasing windings. Fourth, the LED currents can be almost identical even if there are different LED numbers in LED strings. Eventually, the proposed LED driver is verified by simulation and experiment.  相似文献   

16.
This paper presents a current‐doubler rectifier with low output current ripple and high step‐down voltage ratio. In the proposed rectifier, two extra inductors are introduced to extend the duty ratio of the switches, which in turn reduces the peak current through the isolation transformer as well as the output current ripple; two extra diodes are used to provide discharge paths for the two extra inductors. To highlight the merits of the proposed rectifier, its performance indexes, such as voltage gain function, secondary winding peak current of the isolation transformer, and output current ripple, are analyzed and compared with the conventional current‐doubler rectifier. In this paper, a zero‐voltage‐switching phase‐shift full‐bridge converter with the proposed rectifier with an input voltage of 400 V, output voltage of 12 V, and full load power of 500 W has been implemented and verified, and experimental results have shown that 90% conversion efficiency could be achieved at full load. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

17.
This paper proposed a novel high step‐up converter with double boost paths. The circuit uses two switches and one double‐path voltage multiplier cell to own the double boost and interleaved effects simultaneously. The voltage gain ratio of the proposed DC‐DC converter can be three times the ratio of the conventional boost converter such that the voltage stress of the switch can be lower. The high step‐up performance is in accordance with only one double‐path voltage multiplier cell. Therefore, the number of diodes and capacitors in the proposed converter can be reduced. Furthermore, the interleaved property of the proposed circuit can reduce the losses in the rectifier diode and capacitor. The prototype circuit with 24‐V input voltage, 250‐V output voltage, and 150‐W output power is experimentally realized to verify the validity and effectiveness of the proposed converter. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A soft‐switching high step‐up DC‐DC converter with a single magnetic component is presented in this paper. The proposed converter can provide high voltage gain with a relatively low turn ratio of a transformer. Voltage doubler structure is selected for the output stage. Due to this structure, the voltage gain can be increased, and the voltage stresses of output diodes are clamped as the output voltage. Moreover, the output diode currents are controlled by a leakage inductance of a transformer, and the reverse‐recovery loss of the output diodes is significantly reduced. Two power switches in the proposed converter can operate with soft‐switching due to the reflected secondary current. The voltages across the power switches are confined to the clamping capacitor voltage. Steady‐state analysis, simulation, and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
提出一种带三绕组耦合电感的级联型高增益功率变换器。采用三绕组耦合电感、开关电容技术和级联结构,该变换器可实现更高电压增益。变换器的输入电感可有效降低输入电流纹波,从而减小输入电源应力。此外,耦合电感的漏感能量由输出端回收利用,提升效率的同时,能够抑制开关管的电压尖峰,降低其电压应力。详细分析带三绕组耦合电感的级联型高增益功率变换器的工作原理,以及连续导通模式下变换器的稳态性能。最后搭建一台30V输入、380V/0.3A输出的实验样机,实验结果验证了理论分析的正确性。  相似文献   

20.
This paper proposes a modular nonisolated noncoupled inductor‐based high‐voltage gain multi‐input DC‐DC converter. Despite the high‐voltage gain of the proposed topology, the average of normalized voltage stress (NVS) on its switches/diodes is low. This property leads to less loss and cost of switches/diodes. Using the same number of components, the proposed topology produces higher voltage gains, in comparison with recently presented high step‐up topologies. Also, the proposed topology utilizes less number of components (capacitors, inductors, diodes, and switches) for producing a desired voltage gain, which can reduce the size, mass, cost, complexity, and losses and improve the efficiency of converter. Continuous current of input sources is another main advantage of the proposed topology. All the abovementioned characteristics have made the proposed topology very suitable for renewable energy systems (or even hybrid/electric vehicles). Design considerations of the proposed topology have also been presented. For better evaluation, the proposed topology has been compared with some of recently presented high step‐up structures, from viewpoints of producible voltage gain, number of components, and normalized voltage stress (NVS) on switches/diodes. Finally, the prototype of 2‐input version has been experimentally implemented. Obtained experimental results confirm appropriate performance of the proposed topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号