首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This work proposes a 14 b 150 MS/s CMOS A/D converters (ADC) for software‐defined radio systems requiring simultaneously high‐resolution, low‐power, and small chip area at high speed. The proposed calibration‐free ADC employs a wide‐band low‐noise input sample‐and‐hold amplifier (SHA) along with a four‐stage pipelined architecture optimizing scaling‐down factors for the sampling capacitance and the input trans‐conductance of amplifiers in each stage to minimize thermal noise effect and power consumption. A signal‐insensitive 3‐D fully symmetric layout achieves a 14 b level resolution by reducing a capacitor mismatch of three MDACs. The prototype ADC in a 0.13µm 1P8M CMOS technology demonstrates a measured differential nonlinearity (DNL) and integral nonlinearity within 0.81LSB and 2.83LSB at 14 b, respectively. The ADC shows a maximum signal‐to‐noise‐and‐distortion ratio of 64 and 61 dB and a maximum spurious‐free dynamic range of 71 and 70 dB at 120 and 150 MS/s, respectively. The ADC with an active die area of 2.0mm2 consumes 140 mW at 150 MS/s and 1.2 V. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes a 10 b 25 MS/s 4.8 mW 0.13 µm CMOS analog‐to‐digital converter (ADC) for high‐performance portable wireless communication systems, such as digital video broadcasting, digital audio broadcasting, and digital multimedia broadcasting (DMB) systems, simultaneously requiring a low‐voltage, low‐power, and small chip area. A two‐stage pipeline architecture optimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate, while switched‐bias power‐reduction techniques reduce the power consumption of the power‐hungry analog amplifiers. Low‐noise reference currents and voltages are implemented on chip with optional off‐chip voltage references for low‐power system‐on‐a‐chip applications. An optional down‐sampling clock signal selects a sampling rate of 25 or 10 MS/s depending on applications in order to further reduce the power dissipation. The prototype ADC fabricated in a 0.13 µm 1P8M CMOS technology demonstrates a measured peak differential non‐linearity and integral non‐linearity within 0.42 LSB and 0.91 LSB and shows a maximum signal‐to‐noise‐and‐distortion ratio and spurious‐free dynamic range of 56 and 65 dB at all sampling frequencies up to 25 MHz, respectively. The ADC with an active die area of 0.8 mm2 consumes 4.8 and 2.4 mW at 25 and 10 MS/s, respectively, with a 1.2 V supply. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a high resolution time‐to‐digital converter (TDC) for low‐area applications. To achieve both high resolution and low circuit area, we propose a dual‐slope voltage‐domain TDC, which is composed of a time‐to‐voltage converter (TVC) and an analog‐to‐digital converter (ADC). In the TVC, a current source and a capacitor are used to make the circuit as simple as possible. For the same reason, a single‐slope ADC, which is commonly used for compact area ADC applications, is adapted and optimized. Because the main non‐linearity occurs in the current source of the TVC and the ramp generator of the ADC, a double gain‐boosting current source is applied to overcome the low output impedance of the current source in the sub‐100‐nm CMOS process. The prototype TDC is implemented using a 65‐nm CMOS process, and occupies only 0.008 mm2. The measurement result shows a dynamic range with an 8‐bit 8.86‐ps resolution and an integrated non‐linearity of ±1.25 LSB. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In vivo neural recording systems require low power and small area, which are the most important parameters in such systems. This paper reports a new architecture for reducing the power dissipation and area, in analog‐to‐digital converters (ADCs). A time‐based approach is used for the subtraction and amplification in conjunction with a current‐mode algorithm and cyclical stage, which the conversion reuses a single stage for three times, to perform analog‐to‐digital conversion. Based on introduced structure, a 10‐bit 100‐kSample/s time‐based cyclical ADC has been designed and simulated in a standard 90‐nm Complementary Metal Oxide Semiconductor (CMOS) process. Design of the system‐level architecture and the circuits was driven by stringent power constraints for small implantable devices. Simulation results show that the ADC achieves a peak signal‐to‐noise and distortion ratio (SNDR) of 59.6 dB, an effective number of bits (ENOB) of 9.6, a total harmonic distortion (THD) of ?64dB, and a peak integral nonlinearity (INL) of 0.55, related to the least significant bit (LSB). The ADC active area occupies 280µm × 250µm. The total power dissipation is 5µW per conversion stage and 20µW from an 1.2‐V supply for full‐scale conversion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present a 434‐nW 8‐bit successive approximation register analog‐to‐digital converter (SAR ADC). We mainly consider the optimization of power consumption. A modified split‐capacitor array involving a novel switching scheme is proposed, which reduces the switching power consumption to just 13.8 for the single‐ended scheme without any losses in performance. Based on the SMIC CMOS 0.1 μm EEPROM 2P4M process, the simulation results show that at 0.5 V supply voltage, 300 kS/s sample frequency, and 4.98 kHz input frequency, the ADC achieves an signal‐to‐noise‐plus‐distortion ratio (SNDR) of 49.58 dB and effective number of bits (ENOB) of 7.94, and consumes 434 nW, resulting in a figure of merit of 5.9 fJ/conversion step. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

6.
This paper presents an energy‐efficient 12‐bit successive approximation‐register A/D converter (ADC). The D/A converter (DAC) plays a crucial role in ADC linearity, which can be enhanced by using larger capacitor arrays. The binary‐window DAC switching scheme proposed in this paper effectively reduces DAC nonlinearity and switching errors to improve both the spurious‐free dynamic range and signal‐to‐noise‐and‐distortion ratio. The ADC prototype occupies an active area of 0.12 mm2 in the 0.18‐μm CMOS process and consumes a total power of 0.6 mW from a 1.5‐V supply. The measured peak differential nonlinearity and integral nonlinearity are 0.57 and 0.73 least significant bit, respectively. The ADC achieves a 64.7‐dB signal‐to‐noise‐and‐distortion ratio and 83‐dB spurious‐free dynamic range at a sampling rate of 10 MS/s, corresponding to a peak figure‐of‐merit of 43 fJ/conversion‐step.  相似文献   

7.
This paper presents a methodology to design reconfigurable switched‐capacitor delta‐sigma modulators (ΔΣMs) capable of keeping their corresponding power efficiency figures constant and optimal for a set of resolutions and signal bandwidths. This method is especially suitable for low‐bandwidth, medium‐to‐high‐resolution specifications, which are common in biomedical application range. The presented methodology is based on an analytic model of all different contributions to the power dissipation of the ΔΣM. In particular, a novel way to predict the static power dissipated by integrators based on class A and class AB operational transconductance amplifier is presented. The power‐optimal solution is found in terms of filter order, quantizer resolution, oversampling ratio, and capacitor dimensions for a targeted resolution and bandwidth. As the size of the sampling capacitors is crucial to determine power consumption, three approaches to achieve reconfigurability are compared: sizing the sampling capacitors to achieve the highest resolution and keep them constant, change only the first sampling capacitor according to the targeted resolution, or program all sampling capacitors to the required resolution. The second approach results in the best trade‐off between power efficiency and simplicity. A reconfigurable ΔΣM for biomedical applications is designed at transistor level in a 0.18‐µm complementary metal–oxide–semiconductor process following the methodology discussed. A comparison between the power estimated by the proposed analytic model and the transistor implementation shows a maximum difference of 17%, validating thus the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a power‐area‐efficient, 3‐band, 2‐RX MIMO, and TD‐LTE (backward compatible with the HSPA+, HSUPA, HSDPA, and TD‐SCDMA) CMOS receiver is presented and implemented in 0.13‐μm CMOS technology. The continuous‐time delta‐sigma A/D converters (CT ?Σ ADCs) are directly coupled to the outputs of the transimpedance amplifiers, eliminating the need of analog anti‐aliasing filters between RX front‐end and ADCs in conventional structures. The strong adjacent channel interference without low‐pass filter attenuation is handled by proper gain control. A low‐power small‐area solution for excess loop delay compensation is implemented in the CT ?Σ ADC. At 20 MHz bandwidth, the CT ?Σ ADC achieves 66 dB dynamic range and 3.5 dB RX chip noise figure is measured. A maximum of 2.4 dB signal‐to‐noise ratio degradation is measured in all the adjacent channel selectivity (ACS) and blocking tests, demonstrating the effectiveness of the strategy against the low‐pass filter removal from the conventional architecture. The receiver dissipates a maximum of 171 mW at 2‐RX MIMO mode. To our best knowledge, it is the first research paper on the design of fully integrated commercial TD‐LTE receiver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Embedding the time encoding approach inside the loop of the sigma‐delta modulators has been shown as a promising alternative to overcome the resolution problems of analog‐to‐digital converters in low‐voltage complementary metal‐oxide semiconductor (CMOS) circuits. In this paper, a wideband noise‐transfer‐function (NTF)‐enhanced time‐based continuous‐time sigma‐delta modulator (TCSDM) with a second‐order noise‐coupling is presented. The proposed structure benefits from the combination of an asynchronous pulse width modulator as the voltage‐to‐time converter and a time‐to‐digital converter as the sampler to realize the time quantization. By using a novel implementation of the analog‐based noise‐coupling technique, the modulator's noise‐shaping order is improved by two. The concept is elaborated for an NTF‐enhanced second‐order TCSDM, and the comparative analytical calculations and behavioral simulation results are presented to verify the performance of the proposed structure. To further confirm the effectiveness of the presented structure, the circuit‐level implementation of the modulator is provided in Taiwan Semiconductor Manufacturing Company (TSMC) 90 nm CMOS technology. The simulation results show that the proposed modulator achieves a dynamic range of 84 dB over 30 MHz bandwidth while consuming less than 25 mW power from a single 1 V power supply. With the proposed time‐based noise‐coupling structure, both the order and bandwidth requirements of the loop filter are relaxed, and as a result, the analog complexity of the modulator is significantly reduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new multi loop sigma‐delta (ΣΔ) modulator is proposed which employs one order redundant noise shaping in the first stage so the effect of the quantization noise leakage is minimized. Thus, analog circuit requirements are considerably relaxed compared to the conventional Multi‐stAge‐noise‐SHaping (MASH) structures. This enhancement makes the structure appropriate for low voltage and broadband applications. The proposed architecture is compared with traditional high‐order structures, and the advantages are demonstrated by both the analysis and behavioral system level simulations. As a prototype, the proposed MASH 3–2 sigma‐delta modulator is designed, and the detailed design procedure is presented from the system level to the circuit level in a 90 nm CMOS technology. Circuit level simulation results show that the modulator achieves a peak signal‐to‐noise and distortion ratio of 79.4 dB and 79 dB dynamic range over a 10 MHz bandwidth with a sampling frequency of 160 MHz. It consumes 35.4 mW power from a single 1 V supply. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a comparative design study of continuous‐time (CT) incremental sigma‐delta (IΣΔ) ADCs, which can expand another dimension of the IΣΔ ADC world that is dominated by discrete‐time implementations. Several CT IΣΔ ADC architectures are introduced and analyzed aiming to reduce the modulator's sampling frequency and consequently the power dissipation. Based on the analytical results, three CT IΣΔ ADCs are selected to be examined, implemented, and tested. The three ADC prototypes, fabricated in a standard 0.18‐m CMOS technology, demonstrate competitive figure‐of‐merits in terms of power efficiency compared to the state‐of‐the‐art counterparts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study proposes a subsystem consisting of an analog buffer and a single‐ended input to a fully differential ΔΣ modulator to obtain low‐power consumption for portable electrocardiogram applications. With the proposed subsystem, the need for an inverting amplifier is avoided, and low‐power consumption is achieved. The ΔΣ modulator with a second order, 1 bit, and cascade of integrators feedforward structure consumes a low power, in which an inverting and a non‐inverting path implement a single‐ended input to fully‐differential signals. A double sampling technique is proposed for a digital‐to‐analog converter feedback circuit to reduce the effect of the reference voltage, reduce the amplifier requirements, and obtain low‐power consumption. Input‐bias and output‐bias transistors working in the weak‐inversion region are implemented to obtain an extremely large swing for the analog buffer. At a supply voltage of 1.2 V, signal bandwidth of 250 Hz, and sampling frequency of 128 kHz, the measurement results show that the modulator with a buffer achieves a 77 dB peak signal‐to‐noise‐distortion ratio, an effective‐number‐of‐bits of 12.5 bits, an 83 dB dynamic range, and a figure‐of‐merit of 156 dB. The total chip size is approximately 0.28 mm2 with a standard 0.13 µm Complementary Metal‐Oxide‐Silicon (CMOS) process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A fast Fourier transform (FFT)‐based digital calibration method for 1.5 bit/stage pipeline analog‐to‐digital converter (ADC) is proposed in this paper. Capacitor mismatch and finite gain of the operational amplifier (OPAMP) can be overcome by the proposed calibration method. Given that the capacitor mismatch and the finite OPAMP gain cause the radix of all the stages of 1.5 bit/stage pipeline ADC to become unequal to 2, the FFT processor can be adopted to evaluate the actual radixes of all the stages and then generate new digital output to compensate for error caused by these non‐ideal effects. Moreover, as capacitor mismatch and the finite gain of OPAMP can be compensated, low‐gain OPAMP can be used in high‐performance ADC to reduce power dissipation; a small capacitor can then be adopted to save on space. An example of a 10 bit 1.5 bit/stage pipelined ADC with only an 8 bit circuit performance is implemented in 0.18 µm TSMC CMOS process. Circuit measurement result reveals that the signal‐to‐noise‐and‐distortion ratio of 51.03 dB with 11 dB improvement after calibration can be achieved at the sample rate of 1 MHz. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A behavioral model for switched‐capacitors sigma‐delta modulators, suitable for power‐driven design, is presented. Because of the oversampling behavior of this kind of analog‐to‐digital converters, transistor‐level simulations are extremely time consuming. Thus, accurate behavioral models are mandatory in the preliminary design steps to cut the development time. However, when the power consumption of the modulator is pushed down to the absolute minimum level, second‐order effects affecting the settling behavior of the switched‐capacitor integrator must be taken into account. Furthermore, by means of an accurate noise model, based on a second‐order transfer function of the amplifier, a global power minimization is achieved, and the optimum partitioning between the switch and op‐amp noise is obtained. In spite of the improved accuracy, the proposed model requires only a few parameters of the amplifier in the integrator. This allows to easily link the model to an external set of circuit equations, to be derived for the specific amplifier used in the modulator. The model was used in the design of a third‐order modulator in an STM 90‐nm technology. The silicon samples exhibit an effective resolution of 15.2‐b with a 500‐Hz output rate, an oversampling ratio of 500, and a Schreier figure‐of‐merit of 162 dB, with a 38‐μW power consumption at 1.2‐V supply.  相似文献   

15.
In this paper, a new type of an oscillatory noise‐shaped quantizer (NSQ) for time‐based continuous‐time sigma‐delta modulators is presented. The proposed NSQ is composed of an oscillatory voltage‐to‐time converter and a polyphase sampler. Using Tustin's transformation method and through the approximation of the comparator gain, a linearized model of the NSQ is introduced. This way, a novel realization of the first‐ and second‐order NSQ is presented. Its implementation is based on fully passive continuous‐time filters without needing any amplifier or power consuming element. The ploy‐phase sampler inside the NSQ is based on the combination of a time‐to‐digital and a digital‐to‐time converter. The layout of the proposed NSQ is provided in Taiwan Semiconductor Manufacturing Company 0.18 μm complementary metal‐oxide‐semiconductor 1P6M technology. The verification of the proposed NSQ is done via investigating both the system level and postlayout simulation results. Leveraging the proposed NSQ in an Lth‐order time‐based continuous‐time sigma‐delta modulator enhances the noise‐shaping order up to L + 2, confirming its superior effectiveness. This makes it possible to design high performance and wideband continuous‐time SDMs with low power consumption and relaxed design complexity.  相似文献   

16.
This paper describes circuit design considerations for realization of low power dissipation successive approximation register (SAR) analog‐to‐digital converter (ADC) with a time‐mode comparator. A number of design issues related to time‐mode SAR ADC are discussed. Also, noise and offset models describing the impact of the noise and offset on the timing error of time‐domain comparator are presented. The results are verified by comparison to simulations. The design considerations mentioned in this paper are useful for the initial design and the improvements of time‐mode SAR ADC. Then, a number of practical design aspects are illustrated with discussion of an experimental 12‐bit SAR ADC that incorporates a highly dynamic voltage‐to‐time converter and a symmetrical input time‐to‐digital converter. Prototyped in a 0.18‐µm six‐metal one‐polysilicon Complementary Metal‐Oxide‐Semiconductor (CMOS) process, the ADC, at 12 bit, 500 kS/s, achieves a Nyquist signal‐to‐noise‐and‐distortion ratio of 53.24 dB (8.55 effective number of bits) and a spurious‐free dynamic range of 70.73 dB, while dissipating 27.17 μW from a 1.3‐V supply, giving a figure of merit of 145 fJ/conversion‐step. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The application of single‐bit digital signal processing to mechanical control systems has already been proposed by the authors. Multibit A/D converters have been improved to a high level. But it is difficult to improve high‐resolution A/D by the latest semiconductor technologies. A single‐bit digital signal can be generated by a delta‐sigma modulator. Single‐bit digital signal has a small quantized error at low frequency. Then with this single‐bit digital signal processing, high resolution on controlling such a narrow‐bandwidth mechanical system will be realized. In this paper, resolution of analog, multibit, and single‐bit control systems is estimated via simulation. According to the results of simulations, a single‐bit control system has a higher resolution than a multibit system under conditions of equal bit rates. © 1999 Scripta Technica, Electr Eng Jpn, 128(4): 94–101, 1999  相似文献   

18.
Emerging wide‐band communications and spectrum‐sensing systems demand support for multiple electronically scanned beams while maintaining a frequency independent, constant far‐field beam width. Realizing existing phased‐array technology on a digital scale is computationally intensive. Moreover, digitizing wide‐band signals at Nyquist rate requires complex high‐speed analog‐to‐digital converters (ADCs), which is challenging for real developments driven by the current ADC technology. A low‐complexity alternative proposed in this paper is the use of radio‐frequency (RF) channelizers for spectrum division followed by sub‐sampling of the RF sub‐bands, which results in extensive reduction of the necessary ADC operative frequency. The RF‐channelized array signals are directionally filtered using 2‐D digital filterbanks. This mixed‐domain RF/digital aperture array allows sub‐sampling, without utilizing multi‐rate 2‐D systolic arrays, which are difficult to realize in practice. Simulated examples showing 14–19 dB of rejection of wide‐band interference and noise for a processed bandwidth of 1.6 GHz are demonstrated. The sampling rate is 400 MHz. The proposed VLSI hardware uses a single‐phase clock signal of 400 MHz. Prototype hardware realizations and measurement using 65‐nm Xilinx field‐programmable gate arrays, as well as Cadence RTL synthesis results including gate counts, area‐time complexity, and dynamic power consumption for a 45‐nm CMOS circuit operating at B DC = 1.1 V, are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Industrial electronics are in great demand for oil and gas exploration, well drilling, and automotive applications where the operating temperature goes beyond 200 °C. Circuit designs using conventional complementary metal–oxide semiconductor (CMOS) technology are mostly rated at maximum of 125 °C, which is not suitable for harsh environment. In this paper, a high‐temperature (HT) 9‐bit successive approximation register analog‐to‐digital converter (SAR ADC) designed in silicon‐on‐insolation CMOS technology with a sampling rate of 50 kS/s is presented. The design considerations of the HT SAR ADC are discussed from process selection, temperature‐aware circuit design, and measurement perspectives. The ADC achieves an effective number of bit (ENOB) of 8.35 bits and a figure of merit of 93 pJ/step at room temperature. Under HT test, ENOBs of 7.3 bits at 225 °C and 6.9 bits at 300 °C are obtained. The power consumption is 1.52 mW from a 5‐V supply at room temperature and only 2.17 mW at 300 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a 6‐bit 4 MS/s segmented successive approximation register analog‐to‐digital converter for Bluetooth low energy transceiver applications. To improve the linearity and reduce the switching power consumption, a segmented structure with new switching scheme is adopted in the capacitive digital‐to‐analog converter. The proposed switching sequence determines the MSBs according to the thermometer codes and skips some of the unnecessary steps while avoiding bubble errors. To ensure the common mode voltage remains comparatively steady, and to avoid employing power‐hungry common mode reference voltage circuits, each capacitor is divided into 2 identical small capacitors, connecting one of them to “high” and the other one to “low”. The switching sequence is straightforward, and a split capacitor with an integer value is applied, which almost halves the total number of capacitors while retaining the unit capacitor value intact. The prototype analog‐to‐digital converter is fabricated and measured in a 55‐nm (shrinked 65 nm) complementary metal‐oxide semiconductor process and achieves 5.48 to 5.92 Effective Number of Bits (ENOB) at a sampling frequency of 4 MS/s. The Signal to Noise and Distortion Ratio (SNDR) and Spurious Free Dynamic Range (SFDR) for Nyquist input frequency are 34.79 and 40.03 dB, respectively. The current consumption is 4.8 μA from a 1.0‐V supply, which corresponds to the figure of merit of 26 fJ/conversion‐step. The total active area of the analog‐to‐digital converters for the I and Q paths of the receiver is 105 μm × 140 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号