首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the flicker noise conversion to close‐in phase noise in complementary metal‐oxide semiconductor (CMOS) differential inductance‐capacitance (LC)‐voltage controlled oscillator is presented. The contribution of different mechanisms responsible for flicker noise to phase noise conversion is investigated from a theoretical point of view. Impulse sensitivity function theory is exploited to quantify flicker noise to phase noise conversion process from both tail and core transistors. The impact of different parasitic capacitances inside the active core on flicker noise to phase noise conversion is investigated. Also, it is shown how different flicker noise models for core metal‐oxide semiconductor (MOS) transistors may result in different close‐in phase noise behaviors. Based on the developed analysis, design guidelines for reducing the close‐in phase noise are introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a comprehensive comparison between complementary metal‐oxide‐semiconductor (CMOS) LC‐oscillator topologies often used in GHz‐range transceivers. The comparison utilizes the time‐varying root‐locus (TVRL) method to add new insights into the operation of different oscillators. The paper focuses on the treatment of the TVRL trajectories obtained for different oscillators and establishes links between the trajectories and physical phenomena in oscillators. The evaluation of the root trajectories shows the advantages of the TVRL method for comparing oscillator topologies, which is also extended towards the analysis of voltage‐controlled oscillators. The necessary circuit simplifications required in closed‐form root‐locus analysis are avoided by the TVRL, which allows precise oscillator comparison and reveals details on the topology specifics. The derived conclusions have been verified by the Cadence Spectre‐RF simulator on 130‐nm CMOS process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This tutorial distills the salient phase‐noise analysis concepts and key equations developed over the last 75 years relevant to integrated circuit oscillators. Oscillator phase and amplitude fluctuations have been studied since at least 1938 when Berstein solved the Fokker–Planck equations for the phase/amplitude distributions of a resonant oscillator. The principal contribution of this work is the organized, unified presentation of eclectic phase‐noise analysis techniques, facilitating their application to integrated circuit oscillator design. Furthermore, we demonstrate that all these methods boil down to obtaining three things: (1) noise modulation function; (2) noise transfer function; and (3) current‐controlled oscillator gain. For each method, this paper provides a short background explanation of the technique, a step‐by‐step procedure of how to apply the method to hand calculation/computer simulation, and a worked example to demonstrate how to analyze a practical oscillator circuit with that method. This survey article chiefly deals with phase‐noise analysis methods, so to restrict its scope, we limit our discussion to the following: (1) analyzing integrated circuit metal–oxide–semiconductor/bipolar junction transistor‐based LC, delay, and ring oscillator topologies; (2) considering a few oscillator harmonics in our analysis; (3) analyzing thermal/flicker intrinsic device‐noise sources rather than environmental/parametric noise/wander; (4) providing mainly qualitative amplitude‐noise discussions; and (5) omitting measurement methods/phase‐noise reduction techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a design methodology for common‐mode (CM) stability of operational transconductance amplifier (OTA)‐based gyrators. The topology of gm ? C active inductors is briefly reviewed. Subsequently, a comprehensive mathematical analysis on the CM stability of OTA‐based gyrators is presented. Sufficient requirements for the gyrator's CM stability, which easily can be considered during the design process of common‐mode feedback (CMFB) amplifiers, are defined. Based on these stability requirements, a design methodology and a design procedure are proposed. Finally, in order to validate the proposed procedure, a resonator with 20 MHz resonance frequency and a quality factor of 20 is fabricated with UMC 180 nm complementary metal‐oxide‐semiconductor technology, and its CM stability is examined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
When a local oscillator signal generation system is based on an LC oscillator and a frequency multiplier, the question of determining the optimal multiplication factor is a key issue. In this paper, the problem is addressed in order to minimize the 1/f 2 phase noise within a tuning range constraint. The analysis, with a practical graphical representation, reveals the oscillator phase noise dependence on the oscillating frequency in the transition from two different regimes, named the inductor‐limited quality factor and the capacitor‐limited quality factor. The results obtained enable the evaluation of the phase noise performance of systems based on a sub‐harmonic and super‐harmonic oscillators and how they compare with an oscillator in the fundamental mode. Crucial questions like the phase noise improvement that these systems can achieve are analytically answered. A design methodology is thus proposed and verified through measurements on a frequency source at 31 GHz, composed by a sub‐harmonic voltage‐controlled oscillator followed by an injection‐locked frequency tripler, dedicated to backhauling applications, designed on a BiCMOS process technology. The tuning range is 10%, and the phase noise at a 1‐MHz offset is −112 dBc/Hz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper reports the analyses of three techniques for phase noise reduction in the complementary metal‐oxide semiconductor (CMOS) Colpitts oscillator circuit topology. Namely, the three techniques are inductive degeneration, noise filter, and optimum current density. The design of the circuit topology is carried out in 28‐nm bulk CMOS technology. The analytical expression of the oscillation frequency is derived and validated through circuit simulations. Moreover, the theoretical analyses of the three techniques are carried out and verified by means of circuit simulations within a commercial design environment. The results obtained for the inductive degeneration and noise filter show the existence of an optimum inductance for minimum phase noise. The results obtained for the optimum bias current density technique applied to a Colpitts oscillator circuit topology incorporating either inductive degeneration or noise filter show the existence of an optimum bias current density for minimum phase noise. Overall, the analyses show that the adoption of these techniques may lead to a potential phase noise reduction up to 19 dB at a 1‐MHz frequency offset for an oscillation frequency of 10 GHz. © 2015 The Authors International Journal of Circuit Theory and Applications Published by John Wiley & Sons Ltd.  相似文献   

7.
In this paper, a new type of an oscillatory noise‐shaped quantizer (NSQ) for time‐based continuous‐time sigma‐delta modulators is presented. The proposed NSQ is composed of an oscillatory voltage‐to‐time converter and a polyphase sampler. Using Tustin's transformation method and through the approximation of the comparator gain, a linearized model of the NSQ is introduced. This way, a novel realization of the first‐ and second‐order NSQ is presented. Its implementation is based on fully passive continuous‐time filters without needing any amplifier or power consuming element. The ploy‐phase sampler inside the NSQ is based on the combination of a time‐to‐digital and a digital‐to‐time converter. The layout of the proposed NSQ is provided in Taiwan Semiconductor Manufacturing Company 0.18 μm complementary metal‐oxide‐semiconductor 1P6M technology. The verification of the proposed NSQ is done via investigating both the system level and postlayout simulation results. Leveraging the proposed NSQ in an Lth‐order time‐based continuous‐time sigma‐delta modulator enhances the noise‐shaping order up to L + 2, confirming its superior effectiveness. This makes it possible to design high performance and wideband continuous‐time SDMs with low power consumption and relaxed design complexity.  相似文献   

8.
This paper presents a 67GHz LC oscillator exploiting a three‐spiral transformer and implemented in 65nm bulk complementary metal–oxide–semiconductor technology by STMicroelectronics. The three‐spiral transformer allows operating with a lower voltage supply, still obtaining good phase noise performance, and achieving a compact design. Measured performances when supplied with 1.2 V are: oscillation frequency of 67 GHz, phase noise (PN) equal to ?96 dBc/Hz at 1 MHz frequency offset from the carrier, power consumption (PC) equal to 19.2 mW and figure of merit (FOM) equal to ?179.7 dB/Hz. Measured performances when supplied with 0.6 V are: oscillation frequency of 67 GHz; PN equal to ?88.7 dBc/Hz at a 1 MHz frequency offset from the carrier; PC equal to 3.6 mW and FOM equal to ?179.7 dB/Hz. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a front‐end receiver with a dual cross‐couple technique for Medical Implant Communication Services M applications, using a standard complementary metal‐oxide semiconductor process. A lower‐power design is achieved using a resistive feedback, gm‐boosting technique along with a current reuse topology in the receiver's transconductance stage. In addition, a dual cross‐coupling configuration applied at the input stage increases overall gain performance and reduces power consumption. The measured power dissipation of the low‐noise amplifier is only 0.51 mW. The conversion gain of the receiver is 19.74 dB, while the radio frequency and local oscillator frequencies are respectively 403.5 and 393.5 MHz, and the LO power is 0 dBm. The chip exhibits excellent isolation below −70 dB from LO to intermediate frequency and LO to radio frequency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Relaxation RC‐oscillators are notorious for their poor phase‐noise performance. However, there are reasons to expect a phase‐noise reduction in quadrature oscillators obtained by cross‐coupling two relaxation oscillators. We present measurements on 5 GHz oscillators, which show that in RC‐oscillators the coupling reduces both the phase‐noise and quadrature error, whereas in LC‐oscillators the coupling reduces the quadrature error, but increases the phase‐noise. A comparison using standard figures of merit indicates that quadrature RC‐oscillators may be a viable alternative to LC‐oscillators when area and cost are to be minimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A highly selective impedance transformation filtering technique suitable for tunable selective RF receivers is presented in this paper. To achieve blocker rejection comparable with surface acoustic wave (SAW) filters, we use a two‐stage architecture based on a low‐noise transconductance amplifier (LNTA). The filter rejection is captured by a linear periodically varying model that includes band limitation by the LNTA output impedance and the related parasitic capacitances of the impedance transformation circuit. This model is also used to estimate ‘back folding’ by interferers placed at harmonic frequencies. Discussed is also the effect of thermal noise folding and phase noise on the circuit noise figure. As a proof of concept, a chip design of a tunable RF front end using 65 nm complementary metal‐oxide‐semiconductor (CMOS) technology is presented. In measurements, the circuit achieves blocker rejection competitive to SAW filters with noise figure 3.2–5.2 dB, out of band IIP3 > +17 dBm, and blocker P1dB > +5 dBm over frequency range of 0.5–3 GHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an original time‐domain analysis of the phase‐diffusion process, which occurs in oscillators due to the presence of white and colored noise sources. It is shown that the method supplies realistic quantitative predictions of phase‐noise and jitter and provides useful design‐oriented closed‐form expressions of such phenomena. Analytical expressions and numerical simulations are verified through measurements performed on a relaxation oscillator whose behavior is perturbed by externally controlled noise sources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an efficient approach for the optimal designs of two analog circuits, namely complementary metal oxide semiconductor) two‐stage comparator with p‐channel metal oxide semiconductor input driver and n‐channel input and folded‐cascode operational amplifier using a recently proposed meta‐heuristic‐based optimization algorithm named as colliding bodies optimization (CBO). It is a multi‐agent algorithm that does not depend upon any internal control parameter, making the algorithm extremely simple. The main objective of this paper is to optimize the metal oxide semiconductor (MOS) transistors' sizes using CBO in order to reduce the areas occupied by the circuits and to get better performance parameters of the circuits. Simulation Program with Integrated Circuit Emphasis simulation has been carried out by using the optimal values of MOS transistors' sizes and other design parameters to validate that CBO‐based design is satisfying the desired specifications. Simulation results demonstrate that the design specifications are closely met and the required functionalities are achieved. The simulation results also confirm that the CBO‐based approach is superior to the other algorithms in terms of MOS area and performance parameters like gain, power dissipation, etc., for the examples considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This letter presents a novel LC voltage controlled oscillator (VCO) supporting the high‐speed serial transmission standard of RapidIO in 0.13‐µm complementary metal‐oxide semiconductor technology. The low phase noise is achieved through several techniques including current source switching, parallel coupled negative transconductance cell, and varactor bias combination scheme. Measured results of proposed circuit show a low phase noise of ?120 dBc/Hz at 1 MHz offset from 6.25 GHz carrier and tuning range of 4.8 ~ 6.8 GHz (34.48%) while consuming 7.4 mW under the supply voltage of 1.2 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposed simple and accurate threshold voltage (V TH ) extraction techniques, which can be directly adaptable to various semiconductor technologies ranging from deep sub‐micron complementary metal–oxide–semiconductor to large‐area thin‐film transistor devices. These techniques are developed using multiple circuits, namely, a dynamic source follower, an inverter with a diode‐connected load and a current mirror topology, which allow a direct determination of V TH . As the proposed techniques are experimented with large‐area emerging technologies, which have a stable single type (n‐type) transistor, all the designs employed in this work are confined to only n‐type transistors for a fair comparison. The semiconductor technologies under consideration are standard complementary metal–oxide–semiconductor (65 and 130 nm) and oxide (indium–gallium–zinc–oxide and zinc–tin–oxide) thin‐film transistors. In order to validate the accuracy of the proposed techniques, extracted V TH from these methods are compared against the value from linear transfer characteristics. The resulting relative error is within 5%, reinforcing proposed techniques suitability to different semiconductor technologies ranging from deep sub‐micron to large‐area transistors. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Below 100 nm a new scenario is emerging in VLSI design: floorplanning and function are inherently interrelated. Using mainly local connectivity, wire delay and crosstalk problems are eliminated. A new design methodology is proposed, called function‐in‐layout, that possesses: regular layout, mainly local connectivity, functional ‘parasitics’. A bio‐inspired demonstration is presented, a hyperacuity chip, with 30 ps time difference detection using 0.35 mm complementary metal‐oxide semiconductor (CMOS) technology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a new model for the frequency of oscillation, the oscillation amplitude and the phase‐noise of ring oscillators consisting of MOS‐current‐mode‐logic delay cells. The numerical model has been validated through circuit simulations of oscillators designed with a typical 130 nm CMOS technology. A design flow based on the proposed model and on circuit simulations is presented and applied to cells with active loads. The choice of the cell parameters that minimize phase‐noise and power consumption is addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The performance of a switched‐capacitor circuit strongly depends on its analog switches. This paper introduces a new technique to design a high‐precision analog metal‐oxide‐semiconductor switch for switched‐capacitor applications. The accuracy of analog switches is a critical parameter to determine overall performance of the discrete‐time analog systems. To satisfy the accuracy requirements of the switch, a novel technique to minimize the charge injection and clock feedthrough errors by using a very simple structure is proposed. Moreover, an innovative approach to increase the OFF resistance of the switch and consequently minimizing its leakage current is presented. To evaluate the performance of the proposed switch, simulations are done in TSMC 0.18μm standard complementary metal‐oxide‐semiconductor technology with BSIM3V3 device models. The ON and OFF resistances of the switch are one of the most important factors that should be considered while investigating analog switches. The ON resistance of the proposed switch is less than 560Ω over entire input signal range which completely satisfies the tracking bandwidth requirements. In addition, since the proposed switch provides an ultrahigh OFF resistance in the range of several GΩs, the leakage current of the proposed switch is negligible. Simulation results also show that switch‐induced errors are significantly eliminated by using the proposed cancellation technique. The output error charge due to charge injection and clock feedthrough over a wide range of input signal variation is very low (less than 1.6 fC). Moreover, simulation results show that the proposed switch achieves signal to noise plus distortion ratio of 80.55 dB, effective number of bits of 13.08, total harmonic distortion of ?81.41 dB, and spurious‐free dynamic range of 87.7 dB for a 2.5‐MHz sinusoidal input of 800‐mV peak‐to‐peak amplitude at 200‐MHz sampling rate with a 1.8‐V supply voltage. Consequently, the simulation results verify that the proposed switch can significantly improve the dynamic and static performances of a switched‐capacitor circuit.  相似文献   

19.
A new model to predict the dynamic behavior of a self‐timed autonomous digital system powered by a capacitor is derived. The model demonstrates the hyperbolic shape of the discharging process on the capacitor. It allows a symbolic analysis of the discharging process for complex digital loads comprised of series (stack) and parallel configurations of digital circuits. For example, for a stack configuration, important non‐trivial relationships between the hyperbolic discharging rates have been derived based on the knowledge of the velocity saturation index (alpha) of the semiconductor devices used in the digital part. For a realistic (modern complementary metal oxide semiconductor (CMOS) devices) value of alpha = 1.5, the discharging process for a stack of two identical circuits proceeds nearly three times slower than that of any of the stand‐alone circuits. This shows a potential way of extending the lifetime of the energy sources by means of stacking self‐timed circuits. Although the analysis is based on configurations consisting of ring oscillators in CMOS technology, the analysis method can be extended to other types of self‐timed systems and other semiconductor technologies in which the instantaneous switching activity of the digital load is determined by the instantaneous voltage levels provided by the capacitive power transfer mechanism. The analytical derivations have been validated by simulations and experiments carried out with real hardware. © 2014 The Authors. International Journal of Circuit Theory and Applications published by John Wiley & Sons, Ltd.  相似文献   

20.
This study proposes a 300‐mA external capacitor‐free low‐dropout (LDO) regulator for system‐on‐chip and embedded applications. To achieve a full‐load range from 0 to 300 mA, a two‐scheme (a light‐load case and a heavy‐load case) operation LDO regulator with a novel control circuit is proposed. In the light‐load case (0–0.5 mA), only one P‐type metal–oxide–semiconductor input‐pair amplifier with a 10‐pF on‐chip capacitor is used to obtain a load current as low as 0. In the heavy‐load case (0.5 to 300 mA), both P‐type metal–oxide–semiconductor and N‐type metal–oxide–semiconductor differential input‐pair amplifiers with an assistant push‐pull stage are utilized to improve the stability of the LDO regulator and achieve a high slew rate and fast‐transient response. Measurements show an output voltage of 3.3 V and a full output load range from 0 to 300 mA. A line regulation of 1.66 mV/V and a load regulation of 0.0334 mV/mA are achieved. The measured power‐supply rejection ratio at 1 kHz is −65 dB, and the measured output noise is only 34 μV. The total active chip size is approximately 0.4 mm2 with a standard 0.5 μm complementary metal–oxide–semiconductor process. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号