首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fully integrated CMOS LC tank VCO is presented. The LC tanks are implemented by exploiting the active circuit ‘boot‐strapped inductor’ (BSI), which behaves like a high‐quality factor inductor. Particularly, the LC tanks have been implemented by introducing a new version of the CMOS BSI circuit, which provides better versatility and design reliability. In order to verify the effectiveness of such an approach, a case study for 5–6 GHz direct‐conversion multi‐standard WLAN transceivers is presented. The VCO has been designed in a 0.35µm standard CMOS technology. The new BSI exhibits a high‐quality factor (higher than 25 over the all frequency range) and provides a high selectivity without introducing a relevant excess of noise, for a better spectral purity and a lower phase noise (PN) of the VCO. The overall VCO circuit consumes 9 mW. The VCO produces an oscillation in the tuning range from 4.91 to 5.93 GHz (nearly equal to 19%). The circuit exhibits a PN of ?129dBc/Hz at 1 MHz of frequency offset from the central frequency (5.4 GHz) and a FOM equal to 189.5 dBc/Hz at 100 kHz and 194.1 dBc/Hz at 1 MHz of frequency offset, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This letter presents a novel LC voltage controlled oscillator (VCO) supporting the high‐speed serial transmission standard of RapidIO in 0.13‐µm complementary metal‐oxide semiconductor technology. The low phase noise is achieved through several techniques including current source switching, parallel coupled negative transconductance cell, and varactor bias combination scheme. Measured results of proposed circuit show a low phase noise of ?120 dBc/Hz at 1 MHz offset from 6.25 GHz carrier and tuning range of 4.8 ~ 6.8 GHz (34.48%) while consuming 7.4 mW under the supply voltage of 1.2 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Voltage-controlled oscillator (VCO) is the most basic component required for all wireless and communication systems. In this article, a four-stage differential ring VCO with two control voltages for wide tuning range is proposed. This VCO uses the dual-delay loop technique for high operation frequency. Also, a low-VT NMOS transistor is used in series with pull down network of the proposed VCO delay cell to achieve low frequencies. Prelayout simulation of the proposed VCO is performed in 65-nm TSMC CMOS technology in Cadence software under 1.2-V supply voltage. The tuning range of the proposed VCO varies from 1 MHz to 13.8 GHz and has been improved by 19.77% compared to other works. The power consumption of this low power VCO is between 29.3 μW to 1.715 mW. The phase noise of the proposed circuit is −82.3 dBc/Hz at 1 MHz offset frequency and −106.9 dBc/Hz at 10 MHz offset frequency from 5.161 GHz center frequency, while its area is 102.457 μm2 . This design demonstrates other benefits in low power consumption and area compared with other ring oscillators.  相似文献   

4.
A new method to decrease the phase noise of the sinusoidal oscillators is proposed. The proposed method is based on using a dynamic transistor biasing in a typical oscillator topology. This method uses the oscillator impulse sensitivity function (ISF) shaping to reduce the sensitivity of the oscillator to the transistor noise and as a result reducing the oscillator phase noise. A 1.8 GHz, 1.8 V designed oscillator based on the proposed method shows a phase noise of ?130.3dBc/Hz at 1 MHz offset frequency, thereby showing about 6 dB phase noise decreasing in comparison with the typical constant bias topology. This result is obtained from the simulation based on 0.18u CMOS technology and on‐chip spiral inductor with a quality factor equal to 8. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A novel 1.57 GHz complementary metal–oxide semiconductor inductor–capacitor voltage‐controlled oscillator with the common‐mode replica compensation is introduced for mixed‐signal system‐on‐chip applications. In order to alleviate power line disturbances, the center tap node of differential symmetric inductor and the replica biasing circuit are adopted in the differential voltage regulating unit to reduce power supply sensitivity. In addition, this proposed design also leads to low tuning gain and low power dissipation. The post‐layout simulation results under the Taiwan Semiconductor Manufacturing Company's mixed‐signal 0.18 µm 1P6M process show that the proposed design achieves power supply rejection of ?68.6 dB at low frequencies and 1.2 MHz/V pushing sensitivity. It exhibits phase noise of ?130.6 dBc/Hz at a 1 MHz offset from a 1.57 GHz carrier yet dissipates only 5.58 mW under a 1.8 V power supply. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A new current‐reuse voltage‐controlled oscillator (VCO)‐buffer with enhanced load drivability is proposed. It incorporates a PMOS‐based source follower stacked atop a NMOS‐based LC VCO to share the bias current, while preventing the voltage stress at any oscillation node from exceeding the 1.2‐V technology voltage limit. Also, ac‐coupling networks are avoided between the VCO and buffer, improving the Q of the LC tank while minimizing parasitics. With internal buffering, the VCO can directly drive up a 50‐Ω load for testing, or to withstand a large capacitive load in on‐chip local oscillator distribution, particularly suitable for multi‐band MIMO WLAN radios . The fabricated VCO‐buffer in 65‐nm CMOS measures 13.8% tuning range from 5.64 to 6.4 GHz, consumes 3.6 mW at 1.2 V and exhibits ?108.84 dBc/Hz phase noise at 1‐MHz offset. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a 0.18‐µm complementary metal‐oxide‐semiconductor wideband phase‐locked loop with low reference spurs. The dual‐level charge‐pump current calibration technique is proposed to maintain a constant loop bandwidth for wide operation frequency range and achieve low reference spurs. The first level charge‐pump current calibration is seamlessly incorporated in the automatic frequency band hopping control and the mechanism also ensures enough negative transconductance for the voltage‐controlled oscillator to function throughout the whole frequency range. The charge‐pump current mismatch is calibrated by the second level charge‐pump current calibration combined with the pulse‐width scaling technique. The operation frequency range of the phase‐locked loop covers from 4.7 GHz to 6.1 GHz. The measured phase noise is?116 dBc/Hz at 1‐MHz offset and the reference spurs are below?66.8 dBc. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A low-phase-noise CMOS voltage-controlled oscillator (VCO) with zero-bias scheme and multi-stage filtering is presented. Sharing ground with fully integrated loop filter, the PMOS-only VCO achieves a zero-bias scheme, which prevents tuning line noise from disturbing VCO output common-mode voltage and hence minimizes phase noise caused by nonlinear C-V characteristic of varactors. Top-biased current source is optimized by multi-stage filtering to reduce 1/f flicker and thermal noise. Fabricated in TSMC 180 nm CMOS process, the proposed VCO exhibits a measured oscillation frequency of 0.85~1.45 GHz, with a phase noise of -121.8~-131.3 dBc/Hz @1MHz offset over the whole band. Power consumption is 3.8~6.3mW from a 1.8V supply.  相似文献   

9.
文中论述现代精密时频系统对隔离发配放大器的技术要求及其重要作用。介绍为改进守时系统标准频率分配了系统而研制的一个高性能隔能分配放大器。对于5MHz信号,该分配放大器的反向隔离度和路间隔离度均优于115dB(5MHz);相位噪声在1Hz达到-135dBc/Hz.噪声本底为150dBc/Hz;插入秒稳损失达到10^-13量级。在13dBm输出情况下,谐波小于-40dBc。对该分配放大器主要性能测试涉及  相似文献   

10.
This study developed a local oscillator (LO) with low phase noise and low power consumption. The proposed oscillator core comprises a pair of cross‐coupled transistors, which are fed by another pair of transistors that injects current at moments close to the peak of output voltage. The position of the current injection transistors, which are inserted in series with the cross‐coupled transistors, affects the waveform of current injected into an inductive–capacitive (LC) tank. Installing a capacitor on the source node of the cross‐coupled transistors increases the current injected into the LC tank and thereby augments the output voltage amplitude and power efficiency of the LO. The resonator phase shift and Q can be corrected by adjusting the source capacitance, which filters noise. These changes reduce the phase noise to ?123.4 dBc/Hz at a frequency offset of 1 MHz and improve oscillator performance with a figure of merit equal to ?193.5 dBc/Hz. To evaluate the LC tank, a 5 GHz LO was simulated at 1.8 V power supply and 2.5 mW power consumption. The simulation was conducted using a practical 0.18 complementary metal–oxide–semiconductor model manufactured by the Taiwan Semiconductor Manufacturing Company. The simulation results confirmed the analytical findings.  相似文献   

11.
Modern RF front‐ends require wide tuning‐range oscillators with quadrature outputs. In this paper we present a two‐integrator quadrature oscillator, which covers the whole bandwidth of UWB applications. A circuit prototype in a 130 nm CMOS technology is continuously tuneable from 3.1 to 10.6 GHz. The circuit die area is less than 0.013mm2, leading to a figure‐of‐merit FOMA of ?176.7dBc/Hz at the upper frequency. The supply voltage is 1.2 V, and the power consumption is 7 mW at the lower frequency and 13 mW at the upper frequency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A relaxation oscillator design is described, which has a phase noise rivaling ring oscillators, while also featuring linear frequency tuning. We show that the comparator in a relaxation‐oscillator loop can be prevented from contributing to 1/f2 colored phase noise and degrading control linearity. The resulting oscillator is implemented in a power efficient way with a switched‐capacitor circuit. The design results from a thorough analysis of the fundamental phase noise contributions. Simple expressions modeling the theoretical phase noise performance limit are presented, as well as a design strategy to approach this limit. To verify theoretical predictions, a relaxation oscillator is implemented in a baseline 65 nm CMOS process, occupying 200 µm × 150 µm. Its frequency tuning range is 1–12 MHz, and its phase noise is L(100kHz) = ?109dBc/Hz at fosc = 12MHz, while consuming 90 μW. A figure of merit of ?161dBc/Hz is achieved, which is only 4 dB from the theoretical limit. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents different alternatives for the implementation of low‐power monolithic oscillators for wireless body area networks and describes the design of two quadrature generators operating in the 2.4‐GHz frequency range. Both implementations have been designed in a 90‐nm Complementary Metal‐Oxide Semiconductor (CMOS) technology and operate at 1 V of supply voltage. The first architecture uses a voltage‐controlled oscillator (VCO) running at twice the desired output frequency followed by a divider‐by‐2 circuit. It experimentally consumes 335 μW and achieves a phase noise of ?110.2 dBc/Hz at 1 MHz. The second architecture is a quadrature VCO that uses reinforced concrete phase shifters in the coupling path for phase noise improvement. Its power consumption is only 210 μW, and it obtains a phase noise of ?111.9 dBc/Hz at 1 MHz. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A linear, Ultra Wideband, low‐power VCO, suitable for UWB‐FM applications is proposed, forming the main part of a UWB‐FM transmitter. The VCO is designed in TSMC 90thinspacenm digital CMOS process and includes a Source‐Coupled Multivibrator, used as current‐controlled oscillator (CCO) which generates output frequencies between 2.1 and 5 GHz and a voltage‐to‐current (V‐to‐I) converter which translates the VCO input voltage modulation signal to current. Two single‐ended inverter buffers are employed to drive either a differential or a single‐ended UWB antenna. The presented VCO is designed for 1 V power supply and exhibits a linear tuning range of 2.1–5 GHz, a differential output power of ?7.83 dBm±0.78 dB and low power consumption of 8.26 mW, including the output buffers, at the maximum oscillation frequency. It is optimized for a very high ratio of tuning range (81.69%) over power consumption equal to 9.95 dB. The desired frequency band of 3.1–5 GHz for UWB‐FM applications is covered for the entire industrial temperature range (?40 to 125°C). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A frequency synthesizer with low‐power and very short settling time is introduced, which utilizes two‐point channel control paths. While the main‐path is the same as normal channel controls, a digital‐to‐analog converter (DAC) with tunable gain is used for the compensation‐path to form a feed‐forward direct voltage‐controlled oscillator (VCO) control path. When the two paths are ideally matched, the two‐point control can show zero settling time regardless of the amount of frequency change. However, the settling time performance can be significantly degraded if there exists any mismatch between the two paths. In order to remove the mismatch, a simple compensation method combining a linearized VCO with a resistor‐loaded tunable DAC is presented. We show that the overall mismatch can be effectively tuned out by controlling the DAC load resistor, since the mismatch caused by process–voltage–temperature variations is dominated by the resistor variation. We have achieved near‐zero settling time for 75thinspaceMHz frequency jumping from 2.4 GHz even with the use of narrow phase‐locked loop (PLL) bandwidth of 20 kHz. When the phase noise at 1 MHz offset from 2.4 GHz is ? 116.6dBc/ Hz, the total PLL power consumption using 0.18 µm CMOS technology is only 4.2 mW. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

Design of tunable Gunn diode—based active antenna module including a new type of planar dielectric resonator (PDR) tuned by a ferroelectric (FE) varactor is presented. The module is designed in such a way that the PDR acts both as a stabilizing resonator and as a radiator. MW properties of FE elements used for VCO tuning are considered. The module operates at frequency around of 17 GHz and demonstrates the radiated power of 8.8 ± 0.1 dBm over the 130 MHz tuning range and a phase-noise level of ?95 dBc/Hz at 100 kHz offset. 65° width of the radiation pattern in both the E and H planes corresponding to a gain of 5.1 dBi was measured. The maximal VCO power limited by the dielectric nonlinearity of a FE film in the microwave electric field and by the FE film overheating is estimated for FE film-based varactors of the planar and parallel structures.  相似文献   

17.
This paper presents cross‐coupled voltage‐controlled oscillators (VCOs) involving array of switchable inductors (i.e., N  = 1 and N  = 2 switchable inductors) and implemented using gallium‐nitride high electron mobility transistors on Si substrate technology for worldwide interoperability for microwave access applications. Band selection and coarse frequency tuning were achieved using the array of switchable inductors, whereas fine tuning was controlled using varactors. Two bands were obtained using the one‐stage switchable inductor VCO operating in the ranges 3.41–3.57 GHz and 3.85–3.94 GHz. The VCO output power (Pout) was 21.8 dBm at 3.57 GHz from a 10‐V power supply. Four continuous bands were obtained using the two‐stage switchable inductors VCO operating in the range of 3.16–3.4, 3.25–3.64, 3.48–3.71 and 3.64–3.9 GHz, respectively. An additional band was generated by fine‐tuning the inductance through mutual coupling between the transmission line and one of the inductors. The proposed two‐stage switchable inductors VCO provided a 21% tuning range at frequencies ranging with a control voltage ranging from 12 to 20 V, a low phase noise of −123 dBc/Hz at a 1‐MHz offset from a 3.3‐GHz carrier and a Pout of 21 dBm at 3.5 GHz from a 10‐V power supply. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a feedforward linearization method for programmable CMOS operational transconductance amplifier (OTA) is described. The proposed circuit technique is developed using simple source‐coupled differential pair transconductors, a feedback‐loop amplifier for self‐adjusting transcoductance (gm) and a linear reference resistor (R). As a result, an efficient linearization of a transfer characteristic of the OTA is obtained. SPICE simulations show that for 0.35µm AMS CMOS process with a single +3V power supply, total harmonic distortion at 1 Vpp and temperature range from ?30 to +90°C is less than ?49.3 dB in comparison with ?35.8 dB without linearization. Moreover, the input voltage range of linear operation is increased. Power consumption of the linearized OTA circuit is 0.86 mW. Finally, the OTA is used to design a third‐order elliptic low‐pass filter in high‐frequency range. The cut‐off frequency of the operational transconductance amplifier‐capacitor (OTA‐C) filter is tunable in the range of 322.6 kHz–10 MHz using the feedforward linearized OTAs with the digitally programmable current mirrors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper gives a detail presentation of a fully pseudo‐differential open‐loop BiCMOS track‐and‐hold amplifier (THA) for 9‐b operation up to 1 GSample/s. The proposed THA not only uses a double sampling technique to increase the achievable sampling frequency by a factor of two, but also employs a linearization technique to reduce the gain dependence of the THA input stage upon the input level. Moreover, timing mismatch between the clock signals of the two interleaved paths is minimized by means of a timing mismatch insensitive clock generator controlled by a common master sampling clock. The post‐layout simulation results using TSMC 75 GHz fT, 0.35‐µm SiGe BiCMOS technology show that the proposed architecture achieve a signal to noise and distortion ratio of 53.92 dB, equivalent to the effective number of bits of 8.66‐b for 58.11 MHz input frequency at 1 GSample/s. The power dissipation of the whole THA is 161.1 mW. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Contents Recent developmental trends in the field of wideband matrix amplifiers are discussed using a 6 GHz–18 GHz monolithic module as a representative example. Employing only four MESFET functions, the unit achieves a gain ofG=16.5 dB±0.35 dB at a maximum return loss ofRL=–10 dB across the 6 GHz–18 GHz frequency band. Even at gain compression levels of 10 dB, the worst harmonic output power does not exceedP(3f 0)=–13.2 dBc. The monolithic chip's dimensions are 1.8×2.75×0.115 mm.
Jüngste Fortschritte beim Entwurf von Matrixverstärkern
Übersicht Es werden jüngste Entwurfstrends im Bereich der Breitband-Matrixverstärker diskutiert, wobei ein monolithisches Modul für 6 GHz–18 GHz als repräsentatives Beispiel vorgestellt wird. Mit nur vier MESFET-Funktionen erreicht die Einheit einen GewinnG von 16,5 dB±0,35 dB bei einer maximalen ReflexionsdämpfungRL von –10 dB über einem Frequenzband von 6 GHz–18 GHz. Sogar bei Pegeln, die den Gewinn um 10 dB erniedrigen, überschreitet die maximale Harmonischen-AusgangsleistungP (3f 0) nicht –13,2dBc. Die Abmessungen des monolithischen Chips betragen 1,8×2,75×0,115 mm.


Dedicated to Prof. Dr.-Ing. H. Döring on the occasion of his 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号