首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a method to predict the charging current, the output power, and the power transfer efficiency of a low‐power, noncontact charger with reasonable accuracy. The low‐power, noncontact charger model considered in this paper consists of a sinusoidal voltage source, a sending and receiving coil, a full wave rectifier circuit, and an AA nickel metal‐hydride battery. The capacitor that is connected in series in the sending coils of the low‐power noncontact charger model to improve the power factor was also examined. The self‐inductance, the mutual inductance, and the resistances of the coils were calculated using axisymmetric finite element analysis, and were substituted into the circuit equations. The circuit equations were solved by using the Runge‐Kutta method. The calculated charging current, output power, and power transfer efficiency were in good agreement with the experimental results.  相似文献   

2.
李慧 《低压电器》2014,(3):42-45,54
针对动力电池内阻极小且具有反电动势的特点,设计了单相电流型PWM整流器为主电路的充电机,选择TMS320F28335 DSP作为控制平台,采用准PR控制器的直接电流控制策略和PI控制器,实现充电机单位功率因数运行和充电电流的稳定输出。充电系统可根据动力电池组SOC输出可变的充电电流以延长动力电池的寿命。设计充电机样机并进行了磷酸铁锂动力电池组充电试验。试验结果表明系统具有良好性能,验证了方案的可行性。  相似文献   

3.
郁百超  李嘉明 《电源学报》2011,9(3):71-76,86
锂离子动力电池无损充电机采用整体串联恒流、单体并联恒压的充电方法,对锂离子动力电池实现无损充电,无损的含意有两层,一是充电效率接近100%,充电功率基本无损耗;二是充、放电完全依据电池的特性曲线,电池本身在充、放电过程中完全无损害.该无损充电机免除电池管理系统,仅由简单的电路实现电池系统、充电系统、放电系统和维护管理系...  相似文献   

4.
An efficient bridgeless power factor correction converter with reduced voltage stress is proposed. In the proposed converter, the input full‐bridge rectifier is removed to reduce the conduction loss of rectification, and the voltage stress of switching devices is significantly reduced by utilizing the additional circuit composed of a capacitor and a diode. Therefore, low‐voltage‐rating diodes with less forward voltage drop and low‐voltage‐rating Metal‐Oxide‐Semiconductor Field‐Effect Transistor (MOSFET) with low RDS(on) is utilized. The proposed converter is based on the single‐ended primary‐inductor converter power factor correction operation in discontinuous conduction mode to achieve a high power factor with a simple control circuit. Consequently, the proposed converter can provide a high power factor and a high power efficiency, and it is also suitable for low‐cost converter for high input/output voltage system. The operational principles, steady‐state analysis, and design equations of the proposed converter are described in detail. Experimental results are verified for a 130 W prototype at a constant switching frequency 100 kHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
风光互补充电控制器的研究   总被引:2,自引:0,他引:2  
介绍了一种小功率风光互补充电控制器.该控制器能有效降低损耗,充分利用风能和太阳能,效率更高.对风力充电而言,在风速较低时,通过Boost斩波器将整流输出电压升至一定值再送至后级电路;当风速较高时,切断Boost电路,将整流输出电压直接送至后级给蓄电池充电.对光伏充电而言,直接利用光伏充电器的后级进行充电.最后通过300...  相似文献   

6.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The wireless power transmission (WPT) is increasingly representing a promising technology and an innovative solution, especially for the electric vehicles (EVs) battery charging. The inductive power transfer (IPT) is the standard technology of wireless charging: the energy transfer occurs between two magnetically coupled coils. The IPT-based battery charging is especially convenient for E-bikes and the physiological effects related to the generated magnetic fields should be estimated. In this context, this work presents a 200 W prototype of wireless battery charger for E-bikes. In addition, the measurements regarding the surrounding magnetic field are given in detail in order to evaluate the actual physiological compatibility of the system.  相似文献   

8.
In this paper the response of a bulk‐driven MOS Metal‐Oxide‐Semiconductor input stage over the input common‐mode voltage range is discussed and experimentally evaluated. In particular, the behavior of the effective input transconductance and the input current is studied for different gate bias voltages of the input transistors. A comparison between simulated and measured results, in standard 0.35‐µm CMOS Complementary Metal‐Oxide‐Semiconductor technology, demonstrates that the model of the MOS transistors is not sufficiently accurate for devices operating under forward bias conditions of their source‐bulk pn junction. Therefore, the fabrication and the experimental evaluation of any solution based on this approach are highly recommended. A technique to automatically control the gate bias voltage of a bulk‐driven differential pair is proposed to optimize the design tradeoff between the effective input transconductance and the input current. The proposed input stage was integrated as a standalone block and was also included in a 1.5‐V second‐order operational transconductance amplifier (OTA)‐C lowpass filter. Experimental results validate the effectiveness of the approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents different alternatives for the implementation of low‐power monolithic oscillators for wireless body area networks and describes the design of two quadrature generators operating in the 2.4‐GHz frequency range. Both implementations have been designed in a 90‐nm Complementary Metal‐Oxide Semiconductor (CMOS) technology and operate at 1 V of supply voltage. The first architecture uses a voltage‐controlled oscillator (VCO) running at twice the desired output frequency followed by a divider‐by‐2 circuit. It experimentally consumes 335 μW and achieves a phase noise of ?110.2 dBc/Hz at 1 MHz. The second architecture is a quadrature VCO that uses reinforced concrete phase shifters in the coupling path for phase noise improvement. Its power consumption is only 210 μW, and it obtains a phase noise of ?111.9 dBc/Hz at 1 MHz. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A battery charger with MPPT function for low‐power PV system applications is presented in this study. For effective miniaturization, the battery charger is designed with high‐frequency operation. Some current‐sensing techniques are studied, and their MPPT implementation is compared. A battery charging method is also designed to prolong battery lifetime without the use of battery current sensors. The operation principles and design considerations of the proposed PV charger are analyzed and discussed in detail. A laboratory prototype is implemented and tested to verify the feasibility of the proposed scheme. Experimental results show that high MPPT accuracy and conversion efficiency can be simultaneously achieved under high‐frequency operation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The high‐power fast charger (HPFC) incorporating a power stage with a controlling loop is presented in this paper. A power stage is composed of an inter‐leaved boost power factor correction and a DC‐DC full‐bridge phase‐shifted (FBPS) converter, and that the HPFC can supply a constant‐voltage (CV) or a constant‐current (CC) power to charge a secondary lithium‐ion battery pack. In addition, the ripple current can be reduced due to the DC‐DC FBPS converter combines with the current‐doubler rectifier at HPFC's output side. Also, the controlling loop is equipped with a voltage compensator and a current compensator, and this design is for the sake of HPFC, which can either operate in CV or CC output mode. Moreover, the shut‐down situation will be prevented by proposed bi‐phase charging controller, when the charging current is adjusted from the fist CC level to the second CC level. Analysis and design considerations of the proposed circuits are presented in details. Experimental results agree well with the theoretical predictions and confirm the validity of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
熊剑峰  张忠会  王薇 《电源技术》2017,(11):1575-1577
基于太阳能光伏技术的迅猛发展,设计了一种基于单片机的快速智能充电系统;系统选用MSP430单片机作为控制核心,实现对蓄电池的充电控制;选用了一种新型开关模式充电器件MAX77818,设计了充电输入电压5 V,充电电流最高可达3 A的应用电路,其中光伏电压输入检测及电池电压检测采用二级运放,使用电流检测芯片INA194及二阶低通滤波器检测光伏电流和电池电流,并将检测电压与电流在LCD显示屏上显示。本设计集成度高,能够实现快速充电,电路设计简单,工作稳定,可在光伏系统中为多种型号的电池实现快速充电。  相似文献   

13.
采用恒压限流法设计了一种简单、合理的蓄电池充电器。充电器电路简单,易于实现。由TI公司PWM控制芯片3845对电路控制,充电器保持蓄电池充电电压不变,电流限定在可接受范围内,可以有效防止因充电电流过大造成蓄电池极板活性物质脱落,损坏蓄电池。测试充电数据,电路效率高,稳定,可靠,此方案可以应用。  相似文献   

14.
对基于新型四开关逆变器的集成式电动汽车充电器进行研究。这种充电器通过重复利用逆变器、电机绕组、传感器以及控制和驱动电路,大幅降低了电机驱动和电池充电系统的成本、重量和体积。在分析集成式充电器的运行原理,并提出了其运行于电力拖动模式和电池充电模式时所采用的调制和控制策略,并在此基础上搭建了仿真模型。仿真结果表明,当这种集成式充电器运行于电力拖动模式时能够在电机绕组上产生正弦电流,使电机正常旋转;当其运行于电池充电模式时,能对电池进行充电,输入功率因数接近于1,输入电流谐波含量较低。  相似文献   

15.
当前越来越多的电动汽车充电设施接入电网,不同充电模式的充电设施接入电网产生的谐波污染将对电网造成不同的影响。对电动汽车充电站内不同充电模式充电机之间的相互影响进行Simulink仿真和谐波分析。首先,建立电动汽车动力电池的仿真模型。其次,建立电动汽车不同充电模式充电机的仿真模型。然后,将动力电池仿真得到的充电曲线直接等效成时变电阻,并作为连续信号直接输入充电机模型进行仿真。最后,在不同充电场景下对不同充电模式充电机进行仿真,分析了不同充电模式的充电机工作时相互影响的谐波规律。  相似文献   

16.
为了解决电动汽车充电站、路边充电桩、地下车库等场合对大功率电动汽车充电机的需求问题,设计了一种最大输出功率为5 kW、输出电压可调的智能型电动汽车充电机。该充电机整流部分采用三相Vienna整流,DC/DC直流变换电路采用三电平全桥直流变换器,并且根据每一部分的特点和需求设计了合适的控制策略。对充电机各项功能的实现作了分析并对系统参数进行了设计,做了相关试验。试验结果表明,所设计的充电机具有较好的运行性能,效率大于85%,功率因数达到了0.95。  相似文献   

17.
A switch‐mode boost DC–DC converter has been developed to compensate for the IR‐drop because of the finite resistance of a charging cable. The boost ratio of the DC–DC converter is adaptively controlled by an IR‐drop sensing circuit to provide the required voltage level to a battery charger regardless of the cable resistance. Implemented in a 0.18 µm BCDMOS process, the IR‐drop compensating switch‐mode boost DC–DC converter occupies 6.2 mm2 active area and shows the 93.2% peak efficiency. The proposed IR‐drop compensating boost converter can be applied to compensate for the IR‐drop of any type of charging cables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Novel circuit design is proposed for a low‐frequency quartz crystal oscillator circuit that consists of four segments. The characteristics of the negative resistance in a low‐frequency Complementary Metal Oxide Semiconductor (CMOS)‐inverter quartz oscillator were reviewed for the two modes of SC (stress‐compensated) cut mode and the overtone of low‐frequency mode; separation of two modes and suppression of overtone oscillation were demonstrated successfully. Experimental results and an estimate of the absolute value of the negative resistance are presented for the four‐segment oscillator circuit and the conventional Colpitts circuit and two new types of oscillator circuits. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

19.
机车蓄电池组充电器电路结构的研究   总被引:1,自引:0,他引:1  
本文分析了机车的辅助供电情况,介绍了目前机车蓄电池组的充电方式,深入研究了目前车载蓄电池组充电器的几种电路结构,并通过对其工作原理和性能的对比分析,指出了这几种方案各自的优缺点.采用新型升降压斩波电路的机车蓄电池组充电器,可以灵活控制机车蓄电池组的充电过程,通过对输出值进行闭环反馈控制,可以达到很高的控制精度,最终实现对蓄电池组的高效充电.  相似文献   

20.
朱立颖  武建文  蒋原 《低压电器》2013,(7):29-32,57
针对锌银蓄电池的工作特点,研究了其充电控制策略。采用预放电方式,避免蓄电池充电时单体电压突然升高;采用串联电阻,减小电流波动和电池损耗;采用电流/电压双闭环控制,实现蓄电池充电。阐述了智能充电器的总体设计思路,介绍了智能充电器的控制电路、主电路设计和软件设计等。根据锌银蓄电池充电策略研制的一种新型航空用大容量锌银蓄电池充电器,成功应用于某航空地面保障设备。所研制的充电器证明了充电策略的可行性和合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号