首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Video compression performance of High Efficiency Video Coding (HEVC) is about twice of H.264/AVC video compression standard. The improvement in coding efficiency in HEVC is achieved by considerable increase in the computational load compared to H.264/AVC which is substantially very computational intensive. One of the units in HEVC which has changed considerably compared to H.264/AVC is Integer Discrete Cosine Transform (IDCT) unit. IDCT in HEVC standard includes 32 × 32, 16 × 16, 8 × 8 and 4 × 4 transforms. In this paper, a hardware solution for implementing the entire inverse IDCTs in HEVC decoder is proposed. The proposed hardware has a resource-sharing pipelined architecture. As a result, the hardware resources and computation time for implementing inverse IDCTs in HEVC decoder are reduced. Synthesis results by using NanGate OpenPDK 45 nm library indicate that the proposed hardware can achieve 222 MHz clock rate and can achieve real-time decoding of 4096 × 3072 video sequences with 70 fps.  相似文献   

2.
With the advent of 3D displays, an efficient encoder is required to compress the video information needed by them. Moreover, for gradual market acceptance of this new technology, it is advisable to offer backward compatibility with existing devices. Thus, a multiview H.264/Advance Video Coding (AVC) and High Efficiency Video Coding (HEVC) hybrid architecture was proposed in the standardization process of HEVC. However, it requires long encoding times due to the use of HEVC. With the aim of tackling this problem, this paper presents an algorithm that reduces the complexity of this hybrid architecture by reducing the encoding complexity of the HEVC views. By using Naïve-Bayes classifiers, the proposed technique exploits the information gathered in the encoding of the H.264/AVC view to make decisions on the splitting of coding units in HEVC side views. Given the novelty of the proposal, the only similar work found in the literature is an unoptimized version of the algorithm presented here. Experimental results show that the proposed algorithm can achieve a good tradeoff between coding efficiency and complexity.  相似文献   

3.
This paper presents a novel hardware architecture for the real-time high-throughput implementation of the adaptive deblocking filtering process specified by the H.264/AVC video coding standard. A parallel filtering order of six units is proposed according to the H.264/AVC standard. With a parallel filtering order (fully compliant with H.264/AVC) and a dedicated data arrangement in local memory banks, the proposed architecture can process filtering operations for one macroblock with less filtering cycles than previously proposed approaches. Whereas, filtering efficiency is improved due to a novel computation scheduling and a dedicated architecture composed of six filtering cores. It can be used either into the decoder or the encoder as a hardware accelerator for the processor or can be embedded into a full-hardware codec. This developed Intellectual Property block-based on the proposed architecture supports multiple and high definition processing flows in real time. While working at clock frequency of 150 MHz, synthesized under 65 nm low power and low voltage CMOS standard cell technology, it easily meets the throughput requirements for 4 k video at 30 fps of all the levels in H.264/AVC video coding standard and consumes 25.08 Kgates.  相似文献   

4.
The hardware implementation of the intra prediction described in this paper allows the H.264/AVC encoder to achieve optimal compression efficiency in real-time conditions. The architecture has some features that distinguish it from other solutions described in literature. Firstly, the architecture supports all intra prediction modes defined in High Profile of the H.264/AVC standard for all chroma formats. Secondly, the architecture can generate predictions for several quantization parameters. Thirdly, the hardware cost is reduced as the same resources are used to compute prediction samples for all the modes. Fourthly, the high sample-generation rate enables the encoder to achieve high throughputs. Fifthly, 4?×?4 block reordering and interleaving with other modes minimize the impact of the long-delay reconstruction loop on the encoder throughput. The architecture is verified against the JM.12 reference model and within the real-time FPGA hardware encoder. The synthesis results show that the design can operate at 100 MHz and 200 MHz for FPGA Aria II and 0.13 μm TSMC technology, respectively. These frequencies allow the encoder to support 720p and 1080p video at 30 fps.  相似文献   

5.
This paper addresses video transcoding from H.264/AVC into MPEG-2 with reduced complexity and high rate-distortion efficiency. While the overall concept is based on a cascaded decoder–encoder, the novel adaptation methods developed in this work have the advantage of providing very good performance in H.264/AVC to MPEG-2 transcoding. The proposed approach exploits the similarities between the coding tools used in both standards, with the objective of obtaining a computationally efficient transcoder without penalising the signal quality. Fast and efficient methods are devised for conversion of macroblock coding modes and translation of motion information in order to compute the MPEG-2 coding format with a reduced number of operations, by reusing the corresponding data embedded in the incoming H.264/AVC coded stream. In comparison with a cascaded decoder–encoder, the fast transcoder achieves computational complexity savings up to 60% with slightly better peak signal-to-noise ratio (PSNR) at the same bitrate.  相似文献   

6.
DCT/IDCT/Hadamard变换被广泛应用于多种视频编码标准中,而H.264/MPEG-4AVC作为新一代的视频压缩标准,它具有在相同图像质量下比其他视频压缩标准拥有更高的压缩率的特性[1],因此对于H.264/MPEG-4AVC中的DCT/IDCT/Hadamard变换的研究就有着十分重要的意义。对于H.264/MPEG-4AVC中变换算法进行分析,并且提出一种可用的高效的硬件实现电路结构,此电路结构能够并行计算4输入像素数据。  相似文献   

7.
The latest international video-coding standard H.264/AVC significantly achieves better coding performance compared to prior video coding standards such as MPEG-2 and H.263, which have been widely used in today’s digital video applications. To provide the interoperability between different coding standards, this paper proposes an efficient architecture for MPEG-2/H.263/H.264/AVC to H.264/AVC intra frame transcoding, using the original information such as discrete cosine transform (DCT) coefficients and coded mode type. Low-frequency components of DCT coefficients and a novel rate distortion cost function are used to select a set of candidate modes for rate distortion optimization (RDO) decision. For H.263 and H.264/AVC, a mode refinement scheme is utilized to eliminate unlikely modes before RDO mode decision, based on coded mode information. The experimental results, conducted on JM12.2 with fast C8MB mode decision, reveal that average 58%, 59% and 60% of computation (re-encoding) time can be saved for MPEG-2, H.263, H.264/AVC to H.264/AVC intra frame transcodings respectively, while preserving good coding performance when compared with complex cascaded pixel domain transcoding (CCPDT); or average 88% (a speed up factor of 8) when compared with CCPDT without considering fast C8MB. The proposed algorithm for H.264/AVC homogeneous transcoding is also compared to the simple cascaded pixel domain transcoding (with original mode reuse). The results of this comparison indicate that the proposed algorithm significantly outperforms the mode reuse algorithm in coding performance, with only slightly higher computation.  相似文献   

8.
High efficiency video coding (HEVC) uses half of the bitrate compared to H.264/advanced video coding(AVC) for encoding the same sequence with similar quality. Because of the advanced hierarchical structures of coding units (CUs), predicting units (PUs), and transform units (TUs), HEVC can better adapt when encoding full high definition (HD) and ultra high definition (UHD) videos. At the expense of encoding efficiency, the complexity of HEVC sharply increases compared to H.264/AVC, mainly due to its quad-tree structure that splits pictures. In this study, the probability distribution, which is generated by a rate distortion optimizing (RDO) cost, is analyzed. Then, an early terminating method is proposed to decrease the complexity of the HEVC based on probability distributions. The experiment shows that the coding time is reduced by 44.9% for HEVC intra coding, at the cost of a 0.61% increase in the Bjøntegaard delta rate (BD-rate), on average.  相似文献   

9.
刘梅锋  陆玲 《电视技术》2012,36(1):1-5,22
高性能视频编码( HEVC)将成为国际最新的视频编解码标准.该标准主要针对目前应用日益广泛的高清甚至超高清视频而开发,其编码的性能目标是在保持原来H.264/AVC的视频质量的同时,将比特率再降低一半.与原有标准一样,HEVC对帧内或帧间的残差信号进行正交变换以集中能量至矩阵左上角,然而H.264/AVC标准中的传统DCT方法对于高清视频的处理已不能有较好效果.讨论研究目前针对HEVC正交变换提出的变换方法,包括基于模式的方向变换MDDT、自适应离散余弦/正弦变换(DCT/DST)、旋转变换(ROT)、IDCT修剪和变换跳过模式(TSM)等方法.实验结果显示了上述几种方法在比特率降低、编码时间缩短、软硬件实现复杂度降低和客观视频质量等方面的改进.最后,提出了对HEVC正交变换的进一步研究方向.  相似文献   

10.
The H.264/AVC video coding standard can achieves higher compression performance than previous video coding standards, such as MPEG-2, MPEG-4, and H.263. Especially, in order to obtain the high coding performance in intra pictures, the H.264/AVC encoder employs various directional spatial prediction modes and the rate-distortion (RD) optimization technique inducing high computational complexity. For further improvement in the coding performance with the low computational complexity, we introduce a sampling-based intra coding method. The proposed method generates two sub-images, which are defined as a sampled sub-image and a prediction error sub-image in this paper, from an original image through horizontal or vertical sampling and prediction processes, and then each sub-image is encoded with different intra prediction modes, quantization parameters, and scanning patterns. Experimental results demonstrate that the proposed method significantly improves the intra coding performance and reduces the encoding complexity with the smaller number of the RD cost calculation process.  相似文献   

11.
High Efficiency Video Coding (HEVC) improved the coding efficiency significantly. Compared to its predecessor H.264/AVC, it can provide equivalent subjective quality with more than 57% bit rate reduction. However, the improvement on coding efficiency is obtained at the expense of much more intensive computation complexity. In this paper, based on an overall analysis of computation complexity at the HEVC encoder, a low complexity encoder optimization scheme is proposed by reducing the number of available candidates for evaluation in terms of the intra prediction mode decision, early termination of coding unit (CU) splitting and adaptive reference frame selection. With the proposed scheme, the rate distortion optimization (RDO) technique of HEVC can be implemented in a low-complexity way for complexity-constrained encoders. Experimental results demonstrate that, compared with the original HEVC reference encoder implementation, the proposed optimization scheme can achieve more than 40% complexity reduction on average with coding performance degradation as only 0.43% which can be ignorable.  相似文献   

12.
A low-power dual-standard video decoder has been developed for mobile applications. It supports MPEG-2 SP@ML and H.264/AVC BL@L4 video decoding in a single chip and features a scalable architecture to reach area/power efficiency. This chip integrates diverse algorithms of MPEG-2 and H.264/AVC to reduce silicon area. Three low-power techniques are proposed. First, a domain-pipelined scalability (DPS) technique is used to optimize the pipelined structure according to the number of processing cycles. Second, bandwidth scalability is implemented via a line-pixel-lookahead (LPL) scheme to improve the external bandwidth and reduce the internal memory size, leading to 51% of memory power reduction compared to a conventional design. Third, low-power motion compensation and deblocking filter are designed to reduce the operating frequency without degrading system performance. A test chip is fabricated in a 0.18mum one-poly six-metal CMOS technology with an area of 15.21 mm2. For mobile applications, H.264/AVC and MPEG-2 video decoding of quarter-common intermediate format (QCIF) sequences at 15 frames per second are achieved at 1.15 MHz clock frequency with power dissipation of 125 muW and 108 muW, respectively, at 1V supply voltage  相似文献   

13.
High efficiency video coding (HEVC) transform algorithm for residual coding uses 2-dimensional (2D) 4×4 transforms with higher precision than H.264's 4×4 transforms, resulting in increased hardware complexity. In this paper, we present a shared architecture that can compute the 4×4 forward discrete cosine transform (DCT) and inverse discrete cosine transform (IDCT) of HEVC using a new mapping scheme in the video processor array structure. The architecture is implemented with only adders and shifts to an area-efficient design. The proposed architecture is synthesized using ISE14.7 and implemented using the BEE4 platform with the Virtex-6 FF1759 LX550T field programmable gate array (FPGA). The result shows that the video processor array structure achieves a maximum operation frequency of 165.2 MHz. The architecture and its implementation are presented in this paper to demonstrate its programmable and high performance.  相似文献   

14.
The high-efficiency video coding(HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group(VCEG) and ISO/IEC Moving Picture Experts Group(MPEG).HEVC is the next-generation video coding standard after H.264/AVC.The goals of the HEVC standardization effort are to double the video coding efficiency of existing H.264/AVC while supporting all the recognized potential applications,such as,video telephony,storage,broadcast,streaming,especially for large picture size video(4k × 2k).The HEVC standard will be completed as an ISO/IEC and ITU-T standard in January 2013.In February 2012,the HEVC standardization process reached its committee draft(CD) stage.The ever-improving HEVC standard has demonstrated a significant gain in coding efficiency in rate-distortion efficiency relative to the existing H.264/AVC.This paper provides an overview of the technical features of HEVC close to HEVC CD stage,covering high-level structure,coding units,prediction units,transform units,spatial signal transformation and PCM representation,intra-picture prediction,inter-picture prediction,entropy coding and in-loop filtering.The HEVC coding efficiency performances comparing with H.264/AVC are also provided.  相似文献   

15.
新一代视频编码标准HEVC(High Efficiency Video Coding)主要面向高清及超高清视频编码,压缩效率相比之前的编码标准H.264有较大提高.但压缩效率的提高必然会带来计算的复杂化,为提高HEVC的解码效率,降低时延,提出了一种并行解码器架构.该并行解码器的设计是基于HEVC中熵片(Entropy slice)和波前并行处理(Wavefront Parallel Processing, WPP)技术的引入以及滤波器(Deblocking Filter)无相关性的特点.实验结果表明,该并行解码器能够充分利用硬件资源,提高解码效率.  相似文献   

16.
Recently the latest video coding standard H.264/AVC is widely used for the mobile and low bitrate video codec in the various multimedia terminals. On the other hand, the MPEG-2 MP@HL codec has become the center of digital video contents since it is the standard codec for the Digital TV (DTV). To provide the bridge between the contents in MPEG-2 and mobile terminals, the transcoding of MPEG-2 contents into H.264/AVC format is an inevitable technology in the digital video market. The main bottleneck in the process lies in the computational complexity. In H.264/AVC, the variable block size (VBS) mode decision (MD) is used in the Interframe for the improved performance in the motion compensated prediction. For the macroblock (MB) which cannot be accurately predicted with one motion vector (MV), it is partitioned into smaller blocks and predicted with different MVs. In addition, SKIP and Intra modes are also permitted in the Interframe MD of H.264/AVC to further ameliorate the encoding performance. With the VBS MD technology, the Inter prediction accuracy can be improved significantly. However, the incidental side-effect is the high computational complexity. In this paper, we propose a fast Interframe MD algorithm for MPEG-2 to H.264/AVC transcoding. The relationships between SKIP and Intra modes are detected at first to map these two kinds of modes directly from MPEG-2 to H.264/AVC. And then the MB activity will be scaled by the residual DCT energy obtained from the MPEG-2 decoding process to estimate the block sizes of the MB mode for H.264/AVC Interframe MD. In our proposed method, the original redundant candidate modes can be eliminated effectively, resulting in the reduction of the computational complexity. It can reduce about 85% Rate-to-Distortion Cost (RDCost) computing and 45% entire processing time compared with the well-known cascaded transcoder while maintaining the video quality.  相似文献   

17.
HEVC静态图像压缩与JPEG2000性能比较与分析   总被引:1,自引:0,他引:1  
林子明  梁利平 《电视技术》2015,39(13):20-23
基于离散小波变换DWT(Discrete Wavelet Transform)的JPEG 2000代表着静态图像的最高水平.HEVC(High Efficiency Video Coding)提出了一个静态图像压缩档次——Main Still Profile,其帧内编码模式采用多种新的算法实现.通过大量实验比较发现,基于HEVC静态图像压缩比JPEG 2000具有更高的压缩效率,将来有望取代JPEG 2000成为新的静态图像压缩标准.  相似文献   

18.
Motion estimation in H.264/AVC, is done in two parts – integer motion estimation, and fractional motion estimation. Hardware reuse for both parts is inefficient due to the differences between them. In this paper we address the hardware reuse problem by proposing a, fast motion estimation algorithm as well as a pipelined FPGA-based, field programmable system-on-chip (FPSoC), for integer and fractional motion estimation. Our results show that the rate-distortion loss of our algorithm is insignificant when compared to full search in H.264/AVC. Its average Y-PSNR loss is 0.065 dB, its average percentage bit rate increase is 5 %, and its power consumption is 76 mW. Our FPSoC is hardware-efficient, even out-performing some state-of-the-art ASIC implementations. It can support up to high definition 1280?×?720p video at 24Hz. Thus, our proposed algorithm and architecture is suitable for delivery of high quality video on low power devices and low bit rate applications which typically use H.264/AVC baseline profile@levels 1–3.1.  相似文献   

19.
In the literatures, the designs of H.264 to High Efficiency Video Coding (HEVC) transcoders mostly focus on inter transcoding. In this paper, a fast intra transcoding system from H.264 to HEVC based on discrete cosine transform (DCT) coefficients and intra prediction modes, called FITD, is proposed by using the intra information retrieved from an H.264 decoder for transcoding. To design effective transcoding strategies, FITD not only refers block size of intra prediction and intra prediction modes, but also effectively uses the DCT coefficients to help a transcoder to predict the complexity of the blocks. We successfully use DCT coefficients as well as intra prediction information embedded in H.264 bitstreams to predict the coding depth map for depth limitation and early termination to simplify HEVC re-encoding process. After a HEVC encoder gets the prediction of a certain CU size from depth map, if it reaches the predicted depth, the HEVC encoder will stop the next CU branch. As a result, the numbers of CU branches and predictions in HEVC re-encoder will be substantially reduced to achieve fast and precise intra transcoding. The experimental results show that the FITD is 1.7–2.5 times faster than the original HEVC in encoding intra frames, while the bitrate is only increased to 3% or less and the PSNR degradation is also controlled within 0.1 dB. Compared to the previous H.264 to HEVC transcoding approaches, FITD clearly maintains the better trade-off between re-encoding speed and video quality.  相似文献   

20.
In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K–2K video decoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号