首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper discusses cyclic deformation and fatigue behaviours of stainless steel 304L and aluminium 7075‐T6 under variable amplitude loading using strain‐controlled as well as load‐controlled tests. Load sequence effects were investigated in step tests with high‐low and low‐high sequences. For stainless steel 304L, strong hardening induced by the first step of the H‐L sequence significantly affects the fatigue behaviour, depending on the test control mode used. For periodic overload tests of stainless steel 304L, hardening due to the overloads was progressive throughout life and more significant than in H‐L step tests. For aluminium 7075‐T6, no effect on deformation behaviour was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviours under random loading were also studied for the two materials. To correlate a broad range of fatigue life data for a material with strong deformation history effect, such as stainless steel, it is shown that a damage parameter with both stress and strain is required. The Smith‐Watson‐Topper parameter as such a parameter is shown to correlate the data reasonably well under different control modes and loading conditions.  相似文献   

2.
Abstract

This study extends the plastic strain energy approach to predict the fatigue life of AISI 304 stainless steel. A modified energy parameter based on the stable plastic strain energy density under tension conditions is proposed to account for the mean strain and stress effects in a low cycle fatigue regime. The fatigue life curve based on the proposed energy parameter can be obtained directly by modifying the parameters in the fatigue life curve based on the stable plastic strain energy pertaining to fully reversed cyclic loading. Hence, the proposed damage parameter provides a convenient means of evaluating fatigue life on the mean strain or stress effect. The modified energy parameter can also be used to explain the combined effect of alternating and mean strain/stress on the fatigue life. In this study, the mean strain effects on the fatigue life of AISI 304 stainless steel are examined by performing fatigue tests at different mean strain levels. The experimental results indicate that the combination of an alternating strain and a mean strain strongly influences the fatigue life. Meanwhile, it is found that the change in fatigue life is sensitive to changes in the proposed damage parameter under the condition of a constant strain amplitude at various mean strain levels. A good agreement is observed between the experimental fatigue life and the fatigue life predicted by the proposed damage parameter. The damage parameter proposed by Smith et al. (1970) is also employed to quantify the mean strain effect. The results indicate that this parameter also provides a reasonable estimate of the fatigue life of AISI 304 stainless steel. However, a simple statistical analysis confirms that the proposed damage parameter provides a better prediction of the fatigue life of AISI 304 stainless steel than the SWT parameter.  相似文献   

3.
Low-cyclic fatigue tests were conducted on semi-circle notched and V-notched specimens made of AISI 304 stainless steel. Extensive scanning electron microscopic examination of the fracture surface was also carried out to correlate the microscopic fracture surface features with the macroscopic fatigue loading parameter for this steel. The elastic-plastic fatigue test results indicated a noticeable cyclic hardening phenomenon and also a great influence of the maximum cyclic stress, the mean stress and the notch geometry on both the fatigue life and the fatigue behaviour process. Using careful sensitivity and regression analysis correlations between the macroscopic fatigue parameters on the one hand and the macroscopic and the microscopic fracture surface features on the other, these correlations are presented and clearly documented and discussed for the two notch geometries investigated.  相似文献   

4.
Fully reversed uniaxial tests performed under total strain and stress control on 304 stainless steels specimens show that, under strain control the fatigue damage for High–Low (H–L) cycling is more significant than that using Miner’s rule, but under stress control opposite results are obtained. This has been attributed to opposite effects of pre-hardening under strain and stress control. Classical non linear damage accumulation models are not able to take into account this difference in sequence effect. Smith–Watson–Topper (SWT) and Fatemi–Socie (FS) criterion combined to linear damage accumulation can take into account this difference in sequence effect through the presence of maximum stress. However these models require an elastic–plastic constitutive law which is difficult to propose due to the presence of high cycle secondary hardening observed on 304 stainless steel. A conservative model for damage accumulation under variable amplitude strain control loading is thus proposed, which does not require a constitutive law. Linear damage accumulation is used, while sequence effect is taken into account using the elastic–plastic memory effect through cyclic strain–stress curves (CSSC) with pre-hardening. This modeling classifies metallic alloys in two groups for damage accumulation, with a stable (independent to pre-hardening) CSSC as for aluminum alloys and with an unstable (dependent to pre-hardening) one as for austenitic stainless steels. For the former case the modeling is identical to Miner’s rule. The modeling is approved based on a large number of tests on 304 stainless steel and is compared with SWT and FS models. In presence of mean stress the modeling permits in a qualitative way to explain the fact that tensile mean stresses in constant amplitude strain control tests are more detrimental than for constant amplitude stress control tests. Moreover it is shown that the SWT model is not always able to predict accurately the fatigue life in presence of a mean stress. Finally, it is concluded that for a 304 stainless steel, in order to take into account the mean stress in fatigue life, the mean stress effect has to be decomposed into two parts: maximum and “intrinsic” mean stress effects.  相似文献   

5.
In this study, the effect of strain rate on the cyclic behaviour of 304L stainless steel is investigated to unveil the complex interrelationship between martensitic phase transformation, secondary hardening, cyclic deformation and fatigue behaviour of this alloy. A series of uniaxial strain controlled fatigue tests with varying cyclic strain rates were conducted at zero and non‐zero mean strain conditions. Secondary hardening was found to be closely related to the volume fraction of strain‐induced martensite which was affected by adiabatic heating due to increasing cyclic strain rates. Tests with lower secondary hardening rates maintained lower stress amplitudes during cyclic loading which resulted in longer fatigue lives for similar strain amplitudes. Fatigue resistance of 304L stainless steel was found to be more sensitive to changes in strain rate than the presence of mean strain. The mean strain effect was minimal due to the significant mean stress relaxation in this material.  相似文献   

6.
A series of symmetric torsional fatigue with axial constant stress tests, a kind of multiaxial fatigue test, was conducted on oligo‐crystalline 316L stainless steel thin wire, which was less than 3.5 grains across diameter of 200 μm. The material presents significant cyclic hardening under symmetric torsion cycling, and hardening is more obvious with the increasing shear strain amplitude. However, symmetric torsional cycle with constant axial stresses tests characterize rapid initial hardening and then gradually softening until fatigue failure. The axial stress has a great effect on torsional fatigue life. Fractography observation shows a mixed failure mode combined torsional fatigue with tensile strain because of axial tensile stress. A newly proposed model with axial stress damage parameter is used to predict the torsional fatigue life with constant axial stress of small scale thin wire.  相似文献   

7.
Low-cycle fatigue tests on cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 °C and tensile tests were conducted on the cold worked and solution-treated materials. At all test temperatures, the cold worked material showed the tendency of higher strength and lower ductility. Following initial cyclic hardening for a few cycles, cyclic softening behavior was observed to dominate until failure occurred during low-cycle fatigue deformation. The softening behavior strongly depends on temperature and strain amplitude. Several life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress and strain depend strongly on temperature. A phenomenological fatigue life prediction model is proposed to account for the influence of temperature on life. The model is correlated with the experimental results.  相似文献   

8.
Cyclic plastic deformation phenomena include the Bauschinger effect, cyclic hardening/softening, strain range effect, loading history memory, ratcheting, mean stress dependent hardening, mean stress relaxation and non-proportional hardening. In this work, different cyclic plastic deformation responses of piping materials (SA333 C-Mn steel and 304LN stainless steel) are experimentally explored. Cyclic hardening/softening is depends upon loading types (i.e. stress/strain controlled), previous loading history and strain/stress range. Pre-straining followed by LCF and mean stress relaxation shows similar kind of material response. Substantial amount of non proportional hardening is observed in SA333 C-Mn steel during 90° out of phase tension-torsion loading. During ratcheting, large amount of permanent strain is accumulated with progression of cycles. Permanent strain accumulation in a particular direction causes cross-sectional area reduction and which results uncontrollable alteration of true stress in engineering stress controlled ratcheting test. In this work, true stress control ratcheting on piping materials has been carried out in laboratory environment. Effects of stress amplitude and mean stress on the ratcheting behaviors are analyzed. A comparison has also been drawn in between the true and engineering stress controlled tests, and massive difference in ratcheting life and strain accumulation is found.  相似文献   

9.
Cyclic plastic deformation characteristics of 304LN stainless steel material have been studied with two proposed cyclic plasticity models. Model MM-I has been proposed to improve the simulation of ratcheting phenomenon and model MM-II has the capability to simulate both cyclic hardening and softening characteristics of the material at various strain ranges. In the present paper, strain controlled simulations are performed with constant, increasing and decreasing strain amplitudes to verify the influences of loading schemes on cyclic plasticity behaviors through simulations and experiments. It is observed that the material 304LN exhibits non Masing characteristics under cyclic plastic deformation. The measured deviation from Masing is well established from the simulation as well as from experiment. Simulation result shows that the assumption of only isotropic hardening is unable to explain the hardening or softening characteristics of the material in low cycle fatigue test. The introduction of memory stress based cyclic hardening coefficient and an exponentially varying ratcheting parameter in the recall term of kinematic hardening rule, have resulted in exceptional improvement in the ratcheting simulation with the proposed model, MM-II. Plastic energy, shape and size of the hysteresis loops are additionally used to verify the nature of cyclic plasticity deformations. Ratcheting test and simulation have been performed to estimate the accumulated plastic strain with different mean and amplitude stresses. In the proposed model MM-I, a new proposition is incorporated for yield stress variation based on the memory stress of loading history along with the evolution of ratcheting parameter with an exponential function of plastic strain. These formulations lead to better realization of ratcheting rate in the transient cycles for all loading schemes. Effect of mean stress on the plastic energy is examined by the simulation model, MM-I. Finally, the micro structural investigation from transmission electronic microscopy is used to correlate the macroscopic and microscopic non Masing behavior of the material.  相似文献   

10.
考虑应变路径的多轴低周疲劳寿命预测模型   总被引:1,自引:0,他引:1  
通过分析材料在多轴非比例加载下产生附加强化的机理,该文以拉扭薄壁管试件为研究对象,分析了临界平面上的应变状态,并在此基础上以塑性应变能为控制参数定义表征多轴低周疲劳寿命对应变路径依赖性的非比例度。基于多轴疲劳临界损伤面原理,应用von-Mises 准则和本文定义的应变路径非比例度参数建立起能反映应变路径对非比例附加强化影响的多轴低周疲劳寿命预测模型。利用该模型预测08X18H10T 不锈钢、Ti-6Al-4V合金、S460N 钢和2.25Cr-1Mo 钢这4 种材料的多轴疲劳寿命,并与试验值进行比较。结果表明:该模型的预测结果与试验结果吻合良好,能同时适用于比例与非比例加载,预测精度较高,便于工程应用。  相似文献   

11.
Cyclic plastic deformation response of materials under asymmetric stress cycling is known as ratcheting. Combined effect of fatigue and permanent tensile strain accumulation results in early failure of materials during ratcheting. For this reason, ratcheting should be emphasized in the safety assessment and life estimation of engineering structures. Engineering and true stress-controlled ratcheting behavior of 304LN stainless steel has been carried out at room temperature. Effects of stress amplitude, mean stress, and their histories (i.e., step loading) on the ratcheting behavior are analyzed in this investigation. It is noticed that under true stress-controlled ratcheting experiments, ratcheting life increases in presence of mean stress, and hysteresis loop area and plastic strain energy decreases with the increasing mean stress. A comparison has also been drawn in between the true and engineering stress-controlled tests, and massive differences in ratcheting life and strain accumulation were found. Ratcheting strain accumulation ceases in descending step loading, is noticed in this work.  相似文献   

12.
In this study the uniaxial/biaxial low‐cycle fatigue behaviour of three structural steels (Ck45 normalized steel, 42CrMo4 quenched and tempered steel and AISI 303 stainless steel) are studied, evaluated and compared. Two parameters are considered for estimating non‐proportional fatigue lives: the coefficient of additional hardening and the factor of non‐proportionality. A series of tests of uniaxial/biaxial low‐cycle fatigue composed of tension/compression with cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Several loading paths were carried out, including proportional and non‐proportional ones, in order to verify the additional hardening caused by different loading paths. The experiments showed that the three materials studied have very different additional hardening behaviour. Generally, the transient process from the initial loading cycle to stabilized loading cycle occurs in a few cycles. The stabilized cyclic stress/strain parameters are controlling parameters for fatigue damage. A factor of non‐proportionality of the loading paths is evaluated based on the Minimum Circumscribed Ellipse approach. It is shown that the microstructure has a great influence on the additional hardening and the hardening effect is dependent on the loading path and also the intensity of the loading.  相似文献   

13.
High-nitrogen steel X13CrMnMoN18-14-3 has been used in manufacturing expanding metallic stents with 0.1 mm diameter, and such medical implant is subjected to complicated and asymmetrical cyclic loading during service. But there is no test data published for the thin wire of the material under cyclic loading. In this study, a series of tests were conducted on X13CrMnMoN18-14-3 stainless steel under uniaxial cyclic loading with mean tensile stress. The yield stress and ultimate strength were higher than that of large size specimen with diameters of 5 mm and 7 mm. The effects of stress amplitude, mean stress, loading history and stress rate on the ratcheting behavior of high-nitrogen steel were analyzed, respectively. It can be concluded that the ratcheting strain amplitude and ratcheting strain rate of X13CrMnMoN18-14-3 steel increases with increasing stress amplitude or mean stress correspondingly. At the meantime, experimental results reveal that the material exhibits a strong memory of the previous loading history, the stress cycling with higher stress amplitude or mean stress greatly restrains the ratcheting of subsequent stress cycling with lower ones. The ratcheting strain rate was very sensitive to the applied cyclic stress rate, and the accumulation of ratcheting strain under stress rate of 21.2 MPa/s is much faster than that under stress rate of 106 MPa/s. In addition, comparison of the fatigue life between bulk specimen and thin wire indicates that the size effect has significant influence on fatigue properties of the material. In the case of the test conducted under stress amplitude of 400 MPa, the fatigue life of small specimen is approximately ten times longer than that of bulk specimen under the same loading conditions.  相似文献   

14.
Influence of mean stress on fatigue life and fatigue limit was investigated for Type 316 stainless steel. The results for prestrained specimens revealed that fatigue life was almost the same in the same strain range regardless of stress amplitude, maximum peak stress and mean strain. The fatigue life was shortened when applying the mean stress for the same strain range, whereas it was increased for the same stress amplitude. It was shown that the reduction in fatigue life was brought about by the change in the effective strain range, which was caused by the increase in minimum peak stress and the ratcheting strain. The fatigue life could be predicted conservatively even if the mean strain was applied by assuming the effective strain range to be equal to the total strain range (by assuming the crack mouth to be never closed). It was concluded that the mean stress correction was not necessary for the load-controlled cyclic loading and for the region where the ratcheting strain was constrained.  相似文献   

15.
We consider a method for the evaluation of fatigue life under multiaxial nonproportional low-cycle loading based on the concept of equivalent strains. The expression for the equivalent strain range is a function only of the strain path and contains a constant depending on the additional hardening of the material under nonproportional loading. We propose a new parameter of the material based on the work of plastic strains in a cycle. This parameter is universal when applied to materials with both low and high degrees of additional hardening. It is in good agreement with the results of testing of 08Kh18N10T stainless steel and VT9 titanium alloy under nonproportional low-cycle loading.  相似文献   

16.
Low-Cycle Fatigue of Ductile Steels under Multiaxial Deformations To investigate the fatigue behaviour of cyclically softening and hardening steels under multiaxial elastic-plastic strains, axial strain and shear strain controlled fatigue tests under constant amplitude loading were carried out. S-N curves under axial strain and torsional pure shear as well as under combined axial strain and shear, in and out of phase, were obtained for the cyclically softening tempered steel 30 CrNiMo 8 (similar to AlSI-Type 4340) and the cyclically hardening quenched stainless steel X 10 CrNiTi 189 (AISI-Type 321) in the region of low-cycle fatigue. For both steels, used in the design of vessels, pipings, shafts, etc. the fatigue life to crack initiation is reduced by an out of phase (δ = 90°) shearing of the strained specimens in comparison to the in phase loading. The decrease of fatigue life under out of phase strains is caused by changing direction of principal strains resulting in an interaction of the deformations in all directions of the surface. This interaction is taken into account by a calculation procedure deriving an equivalent strain and predicting the fatigue life under combined strain on the base of S-N curves for unaxial strain.  相似文献   

17.
Mean stress significantly influence the fatigue life predictions of metallic materials. The Walker mean stress equation with its additional material parameter w provides good predictions for a wide range of materials. Unfortunately, additional tests are necessary to determine the Walker exponent w. In order to overcome this shortcoming, for aluminum alloys, the Walker exponent w was correlated linearly with the sum of ultimate tensile strength and true fracture strength. Then, a Walker exponent corrected effective strain energy density criterion was developed by incorporating the Walker mean stress equation into the strain life curve. The capability of fatigue life prediction for the developed model was checked against the tested data of 304 L stainless steel, SAE 1045 steel, 7075‐T651 aluminum alloy, and Incoloy 901 superalloy, and comparisons were also performed by using the Lv's Walker exponent corrected model. The developed model provides more satisfactory results, especially for the considered materials in loading with mean stress.  相似文献   

18.
This study deals with simulation for cyclic stress/strain evolutions and redistributions, and evaluation of fatigue parameters suitable for estimating fatigue lives under multiaxial loadings. The local cyclic elastic–plastic stress–strain responses were analyzed using the incremental plasticity procedures of ABAQUS finite element code for both smooth and notched specimens made of three materials: a medium carbon steel in the normalized condition, an alloy steel quenched and tempered and a stainless steel, respectively. Emphasis is on the studying of ‘intelligent’ material behaviors to resist fracture, such as stress redistribution and relaxation through plastic deformations, etc. For experimental verifications, a series of tests of biaxial low cycle fatigue composed of tension/compression with static and cyclic torsion were carried out on a biaxial servo-hydraulic testing machine (Instron 8800). Different multiaxial loading paths were used to verify their effects on the additional cyclic hardening. The comparisons between numerical simulations and experimental observations show that the FEM simulations allow better understanding on the evolutions of the local cyclic stress–strain and it is shown that strong interactions exist between the most stressed material element and its neighboring material elements in the plastic deformations and stress redistributions. Based on the local cyclic elastic–plastic stress–strain responses, the energy-based multiaxial fatigue damage parameters are applied to correlating the experimentally obtained lives. Improved correlations between the predicted and the experimental results are shown. It is concluded that the improvement of fatigue life prediction depends not only on the fatigue damage models, but also on the accurate evaluations of the cyclic elasto-plastic stress/strain responses.  相似文献   

19.
在多轴载荷下45钢的循环特性   总被引:2,自引:0,他引:2  
通过多轴疲劳试验,研究了在多轴加载条件下45钢的循环特性变化规律,分析了非比例附加强化、多轴循环软化/硬化特性及疲劳寿命对加载路径参数的依赖性,结果表明,相位角主要影响非比例附加强化程度,幅值比主要影响多轴循环软化/硬化特性,二者都影响多轴疲劳寿命。  相似文献   

20.
Most of the conventional strengthening methods for metals and alloys such as work hardening, precipitation hardening, cause a decrease in ductility and are not very effective for cyclic loading. In this study, a new strengthening method, which is effective for high cycle fatigue, has been developed. The intersections of dislocations in a stainless steel are freezed by very fine martensite particles, which are supposed to suppress dislocation motion at low stress amplitudes. Fatigue life in a high cycle regime increased >60 times, and no decrease in ductility was observed in tensile tests, as compared to a work-hardened stainless steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号