共查询到20条相似文献,搜索用时 15 毫秒
1.
不平衡数据集类别分布严重倾斜,传统的聚类算法由于以提高整体学习性能为目标,往往偏向于聚集多数类,而忽视更有价值的稀有类.本文提出一种基于迭代的特征加权聚类算法,根据当前聚类后簇的特点以及特征重要性度量函数确定特征权值,利用所得权值进行下一轮聚类,直到权值稳定后结束迭代.在多个UCI不平衡数据集上的实验效果表明,本文算法能够较好地识别出重要特征并提高它们的权重,避免聚类算法过度偏向多数类,有效地提高了聚类性能. 相似文献
2.
基于聚类融合的不平衡数据分类方法 总被引:2,自引:0,他引:2
不平衡数据分类问题目前已成为数据挖掘和机器学习的研究热点。文中提出一类基于聚类融合的不平衡数据分类方法,旨在解决传统分类方法对少数类的识别率较低的问题。该方法通过引入“聚类一致性系数”找出处于少数类边界区域和处于多数类中心区域的样本,并分别使用改进的SMOTE过抽样方法和改进的随机欠抽样方法对训练集的少数类和多数类进行不同的处理,以改善不同类数据的平衡度,为分类算法提供更好的训练平台。通过实验对比8种方法在一些公共数据集上的分类性能,结果表明该方法对少数类和多数类均具有较高的识别率。 相似文献
3.
针对分类任务中的不平衡数据集造成的分类性能低下的问题,提出了类不平衡数据的EM聚类过采样算法,通过过采样提高少数类样本数量,从根本上解决数据不平衡问题。首先,算法采用聚类技术,通过欧式距离衡量样本间的相似度,选取每个聚类簇的中心点作为过采样点,一定程度解决了样本的重要程度不够的问题;其次,通过直接在少数类样本空间上进行采样,可较好解决SMOTE、Cluster-SMOTE等方法对聚类空间没有针对性的问题;同时,通过对少数类样本数量的30%进行过采样,有效解决基于Cluster聚类的欠采样盲目追求两类样本数量平衡和SMOTE等算法没有明确采样率的问题。在公开的24个类不平衡数据集上进行了实验,验证了方法的有效性。 相似文献
4.
不平衡分类问题广泛地应用于现实生活中,针对大多数重采样算法侧重于类间平衡,较少关注类内数据分布不平衡问题,提出一种基于聚类的混合采样算法。首先对原始数据集聚类,然后对每一簇样本计算不平衡比,根据不平衡比的大小对该簇样本做出相应处理,最后将平衡后的数据集放入GBDT分类器进行训练。实验表明该算法与几种传统算法相比F1-value和AUC更高,分类效果更好。 相似文献
5.
基于一趟聚类的不平衡数据下抽样算法 总被引:1,自引:0,他引:1
抽样是处理不平衡数据集的一种常用方法,其主要思想是改变类别的分布,缩小稀有类与多数类的分布比例差距.提出一种基于一趟聚类的下抽样方法,根据聚类后簇的特征与数据倾斜程度确定抽样比例,按照每个簇的抽样比例对该簇进行抽样,密度大的簇少抽,密度小的簇多抽或全抽.在压缩数据集的同时,保证了少数类的数量.实验结果表明,本文提出的抽样方法使不平衡数据样本具有较高的代表性,聚类与分类性能得到了提高. 相似文献
6.
7.
8.
在面对现实中广泛存在的不平衡数据分类问题时,大多数 传统分类算法假定数据集类分布是平衡的,分类结果偏向多数类,效果不理想。为此,提出了一种基于聚类融合欠抽样的改进AdaBoost分类算法。该算法首先进行聚类融合,根据样本权值从每个簇中抽取一定比例的多数类和全部的少数类组成平衡数据集。使用AdaBoost算法框架,对多数类和少数类的错分类给予不同的权重调整,选择性地集成分类效果较好的几个基分类器。实验结果表明,该算法在处理不平衡数据分类上具有一定的优势。 相似文献
9.
针对受均匀效应的影响,当前K-means型软子空间算法不能有效聚类不平衡数据的问题,提出一种基于划分的不平衡数据软子空间聚类新算法。首先,提出一种双加权方法,在赋予每个属性一个特征权重的同时,赋予每个簇反映其重要性的一个簇类权重;其次,提出一种混合型数据的新距离度量,以平衡不同类型属性及具有不同符号数目的类属型属性间的差异;第三,定义了基于双加权方法的不平衡数据子空间聚类目标优化函数,给出了优化簇类权重和特征权重的表达式。在实际应用数据集上进行了系列实验,结果表明,新算法使用的双权重方法能够为不平衡数据中的簇类学习更准确的软子空间;与现有的K-means型软子空间算法相比,所提算法提高了不平衡数据的聚类精度,在其中的生物信息学数据上可以取得近50%的提升幅度。 相似文献
10.
杨晓月 《计算机与数字工程》2021,49(11):2305-2309,2330
不平衡数据的分类问题在数据挖掘和机器学习领域中,一直是备受关注的问题.论文从数据预处理方面出发,提出一种基于谱聚类的欠采样方法,以此来降低数据的不平衡程度.先对多类样本进行谱聚类,根据每个聚类簇的密集程度,以及到少类样本的平均距离,来计算每个聚类簇的采样数目和选取怎样的多类样本,此欠采样方法可以有效去除多数类的冗余数据.实验结果证明,该算法可以有效提升少类样本的分类效果. 相似文献
12.
为解决不平衡数据在传统处理方法中容易出现数据的过拟合和欠拟合问题,提出基于统计信息聚类边界的不平衡数据分类方法.去除数据中噪声点,根据数据对象的k距离设定邻域半径,利用对象邻域范围内的k距离统计信息寻找边界点与非边界点;将少数类中的边界点作为样本,采用SMOTE算法进行过采样,对多数类采用基于距离的欠采样删除远离边界的... 相似文献
13.
不平衡数据分类问题是数据挖掘领域的关键挑战之一。过抽样方法是解决不平衡分类问题的一种有效手段。传统过抽样方法没有考虑类内不平衡,为此提出基于改进谱聚类的过抽样方法。该方法首先自动确定聚类簇数,并对少数类样本进行谱聚类,再根据各类内包含样本数与总少数类样本数之比,确定在类内合成的样本数量,最后通过在类内进行过抽样,获得平衡的新数据集。在4个实际数据集上验证了算法的有效性。并在二维合成数据集上对比k均值聚类和改进谱聚类的结果,解释基于两种不同聚类的过抽样算法性能差异的原因。 相似文献
14.
不平衡数据分类是机器学习研究领域中的一个热点问题。针对传统分类算法处理不平衡数据的少数类识别率过低问题,文章提出了一种基于聚类的改进AdaBoost分类算法。算法首先进行基于聚类的欠采样,在多数类样本上进行K均值聚类,之后提取聚类质心,与少数类样本数目一致的聚类质心和所有少数类样本组成新的平衡训练集。为了避免少数类样本数量过少而使训练集过小导致分类精度下降,采用少数过采样技术过采样结合聚类欠采样。然后,借鉴代价敏感学习思想,对AdaBoost算法的基分类器分类误差函数进行改进,赋予不同类别样本非对称错分损失。实验结果表明,算法使模型训练样本具有较高的代表性,在保证总体分类性能的同时提高了少数类的分类精度。 相似文献
15.
软件缺陷预测是软件工程领域的重点研究方向,是保证软件质量的重要途径之一。其中软件缺陷数据的类不平衡问题会影响缺陷预测分类的准确性,为解决类不平衡数据对预测分类的影响,针对如何优化数据预处理的算法执行顺序进行了研究,提出了一种有效提升分类效果的软件缺陷预测模型(ASRAdaboost)。该算法模型在根据对照实验确定数据预处理最优顺序后,采用特征选择卡方检验算法,再执行SMOTE过采样与简单采样方法,解决数据类不平衡和属性冗余同时存在的问题,最后结合Adaboost集成算法,构建出软件缺陷预测模型ASRAdaboost。实验均采用J48决策树作为基分类器,实验结果表明:ASRAdaboost算法模型有效提高了软件缺陷预测的准确性,得到了更好的分类效果。 相似文献
16.
《计算机应用与软件》2018,(1)
针对传统机器学习算法对于不平衡数据少数类的分类精度较低的问题。分析了造成该问题的原因,进而提出一种欠抽样数据处理方法,提高少数类分类精度。该方法通过k-means算法对样本进行多次聚类,删除多数类的噪声以及多数类与少数类重叠度较高的样本。同时引入删除因子λ,降低多数类丢失特性的风险。通过对UCI数据集的实验分析,经该方法处理,分类算法对少数类的召回率和F值均有提高,证明该方法能有效提高少数类的分类精度。最后将方法应用于预测肺癌患者的术后预期寿命,患者一年期死亡率的召回率和F值分别提高42%和23%。 相似文献
17.
不平衡分类在现实生活中有着广泛应用,提高不平衡数据的分类精度一直是相关领域中的热门课题。针对已有欠采样方法容易保留多数类噪声样本的问题,提出一种基于聚类融合欠采样的改进欠采样方法。结合聚类融合与孤立森林(Isolation Forest,iForest)方法,筛选、删除异常指数高的多数类噪声样本,有效提高模型中的样本质量,增强欠采样算法的抗噪声能力。在7个UCI和KEEL不平衡数据集上的实验结果表明,该算法在处理不平衡分类问题时,AUC值和F1值均有一定程度的提升。将算法应用在蛋白质定位预测,提升了预测效果。 相似文献
18.
采用传统不平衡数据集聚类算法直接对数据集编码树进行构建,而未对数据集密度特征进行提取,造成传统算法数据聚类效果差,因此提出了基于最小生成树的不平衡数据集聚类算法。先利用数据区域密度的敏感性,提取数据密度特征,再利用提取的数据集密度特征构建编码树,并计算不平衡聚类状态下的数据集,最后基于最小生成树实现不平衡数据集聚类。设计对比实验,实验结果表明该研究算法聚类效果最好,具有研究价值。 相似文献
19.
采样技术与ELM分类算法进行结合可提高少数类样本的分类精度,但现有的大多数结合ELM的采样方法并未考虑到样本的不平衡程度及样本内部的分布情况,采样技术过于单一,导致分类模型的效率低下,少数类样本的识别率不高。针对此问题,提出了一种基于DPC聚类的重采样技术结合ELM的不平衡数据分类算法,首先根据数据集的不平衡程度分2种情况构建一个混合采样模型来平衡数据集;然后在此模型上运用DPC聚类算法分别对多数类样本和少数类样本进行分析处理,解决数据中存在的类内不平衡和噪声问题,使得2类样本相对均衡;最后使用ELM分类算法对得到的数据集进行分类。实验结果表明,与同类型分类算法进行比较,所提算法的2个分类性能指标在实验数据集上都有明显提升。 相似文献
20.
面向聚类的数据隐藏发布研究 总被引:3,自引:0,他引:3
数据隐藏发布在保护数据隐私和维持数据可用性间寻求一种折中,近年来得到了研究者的持续关注.数据隐藏发布的起因和目标都源于数据的使用价值,聚类作为实现数据深层使用价值的一个重要步骤,在数据挖掘领域得到了广泛的研究.聚类对数据个体特征的依赖与隐藏操作弱化个体特征的主导思想间的矛盾,使得面向聚类的数据隐藏发布成为一个难点.对面向聚类的隐私保护数据发布领域已有研究成果进行了总结,从保存聚类特征粒度的角度,分析保存聚类特征粒度与聚类可用性、隐私保护安全性间的关系;从维持数据聚类可用性效果角度对匿名、随机化、数据交换、人工合成数据替换等主要隐藏方法的原理、特点进行了分析.在对已有技术方法深入对比分析的基础上,指出了面向聚类的数据隐藏发布领域待解决的一些难点问题和未来发展方向. 相似文献