共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
对互联网产生的大量短文本进行聚类分析具有重要的应用价值,但由于短文本存在特征稀疏和特征难以提取的问题,导致传统的文本聚类算法难以有效处理该问题。为了解决该问题,利用非负矩阵分解(NMF)模型提出基于加权核非负矩阵分解(WKNMF)的短文本聚类算法。该算法通过核方法的映射关系将稀疏特征空间映射到高维隐性空间,从而可以充分利用短文本中的隐性语义特征进行聚类;另外,利用核技巧简化高维数据的复杂运算,并通过迭代更新规则不断地动态调整短文本的权重向量,从而可以区分不同短文本对聚类的重要性。在真实的微博数据集上进行了相关实验,结果表明WKNMF算法比K均值、隐含狄利克雷分布(LDA)、NMF和自组织神经网络(SOM)具有更好的聚类质量,准确度和归一化互信息分别达到了66.38%和66.91%。 相似文献
3.
利用欧几里得距离衡量非负矩阵非负满秩分解的近似度,将其转化为最小二乘法求最优问题。并用VC6.0与Lingo对算法进行程序实现,可以为非负矩阵分解应用研究提供一些参考。 相似文献
4.
《计算机科学与探索》2017,(5):732-741
短文本分类经常面临特征维度高、特征稀疏、分类准确率差的问题。特征扩展是解决上述问题的有效方法,但却面临更大的短文本分类效率瓶颈。结合以上问题和现状,针对如何提升短文本分类准确率及效率进行了详细研究,提出了一种Spark平台上的基于关联规则挖掘的短文本特征扩展及分类方法。该方法首先采用背景语料库,通过关联规则挖掘的方式对原短文本进行特征补充;其次针对分类过程,提出基于距离选择的层叠支持向量机(support vector machine,SVM)算法;最后设计Spark平台上的短文本特征扩展与分类算法,通过分布式算法设计,提高短文本处理的效率。实验结果显示,采用提出的Spark平台上基于关联规则挖掘的短文本特征扩展方法后,针对大数据集,Spark集群上短文本特征扩展及分类效率约为传统单机上效率的4倍,且相比于传统分类实验,平均得到约15%的效率提升,其中特征扩展及分类优化准确率提升分别为10%与5%。 相似文献
5.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(DiaNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。 相似文献
6.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(Di-aNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。 相似文献
7.
提出一种基于非负矩阵分解NMF(Non-negative Matrix Factorization)的数字水印算法.先通过NMF构造载体图像基于部分表示的系数矩阵,将灰度水印图像嵌入其中;再利用NMF基矩阵作为密钥提取水印.为了说明有效性,该算法与主流的DCT水印算法进行相关比较实验,结果表明该算法同DCT算法一样有效,且在抗剪切和抗滤波性能上优于DCT算法. 相似文献
8.
非负矩阵分解算法可以作为一种新型的特征抽取方法。将非负矩阵分解算法和现有的其它三种现有的特征抽取算法进行详细比较:奇异值分解方法和非负矩阵分解方法本质上是不同的两种特征抽取方法,非负特性使得由非负矩阵分解比奇异值分解方法更接近人们的认知习惯。基于聚类的特征提取方法是一种简化了的非负矩阵分解算法;基于概率的特征提取方法等价于非负矩阵分解在特定约束条件下的变体。通过比较充分体现了非负矩阵分解算法的非负性和局部性特点。 相似文献
9.
10.
图像融合的非负矩阵分解算法 总被引:6,自引:0,他引:6
提出一种将非负矩阵分解思想用于图像融合的算法.在非负矩阵分解过程中,适当地选取特征空间的维数可以获取原始数据的局部特征.首先分析了使用非负矩阵分解算法提取图像综合特征的原理,并给出了一个可视化实例;将参与融合的图像作为原始数据,特征空间的维数选为1,利用非负矩阵分解得到的特征基包含了原始图像的整体特征,这个特征基图像就是原始图像的融合结果.多类不同模态图像融合的实验结果表明,文中算法比小波变换的方法具有更好的融合效果. 相似文献
11.
提出一种处理AVIRIs高光谱图像数据的计算机分类算法。首先采用投影梯度(Projected Gradient)改进的非负矩阵分解(NMF)方法对高光谱数据进行特征提取,大大降低了分解过程中两个子迭代问题的时间复杂度,而后利用径向基函数神经网络(RBFNN)分类器对提取结果进行分类。结果表明,与传统NMF和主成分分析相比,PGNMF—RBF算法消耗时间最少,分类精度最高,6类地物的分类精度达到83.34%。该算法在保留非负矩阵分解明确物理意义的基础上,获得了更快的分解速度和更高的分类精度,在高光谱图像分类领域具有较大的应用潜力。 相似文献
12.
传统的多标签分类算法是以二值标签预测为基础的,而二值标签由于仅能指示数据是否具有相关类别,所含语义信息较少,无法充分表示标签语义信息。为充分挖掘标签空间的语义信息,提出了一种基于非负矩阵分解和稀疏表示的多标签分类算法(MLNS)。该算法结合非负矩阵分解与稀疏表示技术,将数据的二值标签转化为实值标签,从而丰富标签语义信息并提升分类效果。首先,对标签空间进行非负矩阵分解以获得标签潜在语义空间,并将标签潜在语义空间与原始特征空间结合以形成新的特征空间;然后,对此特征空间进行稀疏编码来获得样本间的全局相似关系;最后,利用该相似关系重构二值标签向量,从而实现二值标签与实值标签的转化。在5个标准多标签数据集和5个评价指标上将所提算法与MLBGM、ML2、LIFT和MLRWKNN等算法进行对比。实验结果表明,所提MLNS在多标签分类中优于对比的多标签分类算法,在50%的案例中排名第一,在76%的案例中排名前二,在全部的案例中排名前三。 相似文献
13.
作为一种基于深层神经网络提取的低维特征,瓶颈特征在连续语音识别中取得了很大的成功。然而训练瓶颈结构的深层神经网络时,瓶颈层的存在会降低网络输出层的帧准确率,进而反过来影响该特征的性能。针对这一问题,本文基于非负矩阵分解算法,提出一种利用不包含瓶颈层的深层神经网络提取低维特征的方法。该方法利用半非负矩阵分解和凸非负矩阵分解算法对隐含层权值矩阵分解得到基矩阵,将其作为新的特征层权值矩阵,然后在该层不设置偏移向量的情况下,通过数据前向传播提取新型特征。实验表明,该特征具有较为稳定的规律,且适用于不同的识别任务和网络结构。当使用训练数据充足的语料进行实验时,该特征表现出同瓶颈特征几乎相同的识别性能;而在低资源环境下,基于该特征识别系统的识别率明显优于深层神经网络混合识别系统和瓶颈特征识别系统。 相似文献
14.
非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种常用的非负多元数据描述方法.处理数据矩阵集时,NMF描述力不强、推广性差.为解决这两个问题,并保留NMF的好特性,该文提出了非负矩阵集分解(Non-negative Matrix Set Factorization,NMSF)的概念,并在NMSF的框架下系统研究了基于双线性型的非负矩阵集分解(Bilinear Form-Based Non-negative Matrix Set Faetorization,BFBNMSF),构造了单调下降的BFBNMSF算法.理论分析和实验结果均表明:处理数据矩阵集时,BFBNMSF比NMF描述力强、推广性好.由此可认为,此时BFBNMSF比NMF更善于抓住数据的本质特征. 相似文献
15.
针对非负矩阵分解稀疏性不够,通过引入平滑矩阵调节字典矩阵和系数矩阵的稀疏性,提出基于非平滑非负矩阵分解语音增强算法。算法通过语音和噪声的先验字典学习构造联合字典矩阵;然后通过非平滑非负矩阵分解更新带噪语音在联合字典矩阵下的投影系数实现语音增强;同时通过滑动窗口法实时更新先验噪声字典。仿真结果表明,该算法相对非负矩阵分解语音增强算法和MMSE算法具有更好的抑制噪声能力。 相似文献
16.
基于线性投影结构的非负矩阵分解 总被引:4,自引:0,他引:4
非负矩阵分解(Non-negative matrix factorization, NMF)是一个近年来非常流行的非负数据处理方法, 它常用于维数约减、特征提取和数据挖掘等. NMF定义中采用的数学模型基于非线性投影结构构造, 这决定了NMF降维需借助计算量很大的迭代操作来实现. 此外, 由此模型提取的NMF特征常不稀疏, 这与NMF的设计期望相差甚远. 为一并解决上述两个问题, 本文提出了一个新的模型---基于线性投影结构的NMF (Linear projection-based NMF, LPBNMF), 并构造了一个单调的LPBNMF算法. 从数学的角度看, LPBNMF可理解为实现NMF的一种特殊方式. LPBNMF降维通过线性变换来完成, 它所采用的数学模型的自身结构特点决定了由其得到的特征一定非常稀疏. 大量的比较实验表明, PBNMF的降维效率显著高于NMF, LPBNMF特征明显比NMF特征更稀疏和局部化. 最后, 基于AR人脸数据库的实验揭示, LPBNMF特征比NMF、LDA以及PCA等特征更适合于用最近邻分类法处理有遮挡人脸识别问题. 相似文献
17.
18.
为解决传统非负矩阵分解不考虑潜在因子的相关性与分布特征等缺点,提出一种基于最大熵与相关性分析的非负矩阵分解方法.利用最大熵原理描述非负矩阵分解中的潜在因子分布,以捕捉语义质量的潜在因子特性,并提出一种基于相似性的方法来度量差异性.将自适应加权策略引入因子间的相互关系,使得每个潜在因子能够无监督地获得自适应权重,并对自适应加权的潜在因子进行非线性变换.在多个数据集上的实验结果表明,该方法能够提升传统方法的效果. 相似文献
19.
为了在语音转换过程中充分考虑语音的帧间相关性,提出了一种基于卷积非负矩阵分解的语音转换方法.卷积非负矩阵分解得到的时频基可较好地保存语音信号中的个人特征信息及帧间相关性.利用这一特性,在训练阶段,通过卷积非负矩阵分解从训练数据中提取源说话人和目标说话人相匹配的时频基.在转换阶段,通过时频基替换实现对源说话人语音的转换.相对于传统方法,本方法能够更好地保存和转换语音帧间相关性.实验仿真及主、客观评价结果表明,与基于高斯混合模型、状态空间模型的语音转换方法相比,该方法具有更好的转换语音质量和转换相似度. 相似文献