首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用躺滴技术观察了在1248K 活性钎料 Cu_(50)Ti_(50)在 Sialon 陶瓷表面的铺展动力学过程,并用 X射线衍射技术鉴定了在金属/陶瓷界面上产生的界面反应产物。结果发现,在试验条件下(1248K,0—5min),这种活性钎料在陶瓷表面流动时,润湿半径与铺展时间的平方根之间存在很好的线性关系。就作者所知,这一规律是第一次在金属—陶瓷系统中被发现和报道,其机理有待于进一步研究。  相似文献   

2.
镀锡银钎料扩散过渡区的物相和形成机制   总被引:1,自引:1,他引:0  
采用温度梯度法对镀锡银钎料进行热扩散处理,形成了扩散过渡区。为了揭示镀锡银钎料扩散过渡区的形成机制和主要物相的形成过程,借助金相显微镜、扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射分析仪(XRD)对扩散过渡区的显微组织、Sn元素的面扫描分布、物相组成及形貌进行分析。研究表明,Sn元素在镀锡银钎料中分布均匀、无偏析,在扩散过渡区主要以棒状Ag_3Sn相和块状Cu_3Sn相存在。随着热扩散温度升高,Ag_3Sn相和Cu_3Sn相的相对衍射强度逐渐增大。Ag_3Sn相的形成过程分为三个阶段:Ag_3Sn颗粒相弥散分布、Ag_3Sn颗粒相互相接触合并、生成大块棒状化合物相。Cu_3Sn相主要是锡晶须生长冲破镀层的氧化膜,在张应力和压应力协同作用下形成。镀锡银钎料扩散过渡区的形成机制为"钎接、互扩散、亚稳态、合金化"。  相似文献   

3.
Ti60合金在650~750℃高温下的氧化行为   总被引:5,自引:0,他引:5  
研究了Ti60合金(Ti-5.6A1-4.8Sn-2.0Zr-1.0Mo-0.85Nd-0.34Si)在650~750℃下的高温氧化行为;采用恒温或循环氧化增重方法、氧化速度常数、活度等理论计算研究了合金氧化的热力学和动力学规律;用X射线衍射(XRD)、扫描电子显微镜(SEM)等方法,研究氧化膜的表面形貌和结构;采用俄歇电子能谱(AES)分析元素沿深度方向的分布,研究元素在氧化过程中的扩散行为。研究结果表明:Ti60合金在650℃和700℃有较好的抗氧化性能,其循环氧化动力学曲线基本上符合抛物线规律;在750℃,氧化严重,其循环氧化动力学曲线近似符合抛物线一直线规律。氧化层由金红石结构的TiO2氧化物和少量的Al2O3组成。氧化表面形貌为网篮状组织,这是由于α相和β相的成分和结构不同,界面扩散和体扩散差异导致的氧化程度不同所造成的。稀土第二相处氧化严重,表面裂纹大多产生于稀土第二相颗粒。  相似文献   

4.
采用真空保护下的活性金属钎焊法对95%(质量分数)氧化铝陶瓷与低碳钢进行了钎焊,所用钎料为Ag-Cu-Ti3活性钎料.通过X射线衍射仪(XRD)对界面的反应产物进行了物相分析,并用能谱仪(EDAX)分析了界面元素组成.结果表明,钎焊接头界面的反应十分复杂,反应产物多种多样,主要是Ti3Cu3O,Ti3A1,TiMn,TiFe2,TiC等物质,界面的反应层按A12O3陶瓷/Ti3Cu3O/Ti3Al TiMn TiFe2 Ag(s,s) Cu(s,s)/TiC/低碳钢的规律过渡.  相似文献   

5.
研究了在固定温度380℃和不同钎焊时间条件下,液态Sn3.0Ag0.5Cu钎料与Cu、Fe、Co等3种金属基板的界面反应及其界面化合物(IMC)。研究结果表明,随着钎焊时间的增加,三者界面金属间化合物的平均厚度逐渐增加。Sn3.0Ag0.5Cu/Cu界面IMC主要由Cu_6Sn_5和Cu_3Sn组成,经过长时间钎焊后界面化合物大部分是Cu_3Sn。Sn3.0Ag0.5Cu/Fe界面化合物成分是FeSn2,相比另外两种界面,IMC在钎焊过程中生长最慢,形成的厚度最小。Sn3.0Ag0.5Cu/Co界面在短时间钎焊时(1min)会出现分层现象,认为是少量CoSn2和Sn原子在靠近钎料一侧反应生成CoSn3,靠近基板一侧生成CoSn2。长时间钎焊后观察到界面化合物只有CoSn3。通过对数据拟合可得到Sn3.0Ag0.5Cu/Cu、Fe、Co 3种液固反应界面的IMC层的生长率常数分别为9.55×10-6t 0.34,1.51×10~(-6)t~(0.18),0.85×10~(-6)t~(0.45)。比较3种基板,液态Sn基钎料与Cu基板的界面反应速率最快,IMC平均厚度也更厚。  相似文献   

6.
采用Cu_(39.37)Ti_(32.19)Zr_(19.38)Ni_(9.06)(原子比)非晶态钎料对ZrB_2-SiC超高温陶瓷进行钎焊。通过X射线衍射、扫描电镜、万能试验机对钎料的微观结构以及钎焊接头形貌、析出相和室温力学性能进行系统分析。结果表明:在一定钎焊温度下,随钎焊时间的增加,接头剪切强度逐渐减小,且伴随裂纹的出现。在钎焊温度1183 K,钎焊时间30 min时获得的剪切强度最高,约为160 MPa。润湿性实验表明该非晶钎料在ZrB_2-SiC陶瓷表面的润湿性良好。接头剪切强度与钎料和母材之间的反应层厚度有关,通过计算得出反应层厚度形成的激活能Q和反应层生长速度A_0,建立了反应层生长规律的表达式。  相似文献   

7.
石玗  高海铭  李广  李想 《材料导报》2018,32(6):909-914
以解决铜电解永久型阴极板导电杆铜-钢异种金属焊接问题为目标,采用Sn-Cu系钎料在不同钎焊工艺下对T2紫铜和316不锈钢进行铜-钢异种金属高频感应钎焊试验。利用光学显微镜、扫描电镜、能谱仪、X射线衍射仪分析研究了不同工艺参数下形成钎焊接头的微观组织、物相种类及元素分布,同时采用智能金属导体电阻率仪对铜钢焊接试样的导电性进行了检测。结果表明,不同工艺下形成的焊缝界面清晰且无明显的焊接缺陷。钎焊接头主要由铜侧扩散反应层、焊缝中心层、钢侧扩散反应层三部分组成;铜侧扩散反应层呈连续的"锯齿"状分布,主要由金属间化合物Cu_6Sn_5组成,中心层主要由锡单质、锡的氧化物和少量铜锡金属间化合物Cu_6Sn_5组成,钢侧扩散反应层生成了少量的铁锡金属间化合物Fe_(1.3)Sn。试样导电率与中心层金属间化合物Cu_3Sn的生成量和焊接温度均成反比。通过获得的最佳工艺参数能够得到焊缝成形美观、连接强度优良、导电性能良好的铜-钢钎焊接头。  相似文献   

8.
采用 TG-DTA 热分析和 X 射线衍射相结合的方法,研究了由不同原料制取单一相 YBa2-Cu_3O_(7-(?))超导体的合成反应机理。试验结果表明,YBa2Cu_3O_(7-(?))的形成经历两个反应阶段,首先形成 BaCuO_2和 Y_2Cu_2O_5,随后这两个二元复合氧化物化合形成 YBa2Cu_3O_(7-(?))。各步反应温度受钡盐种类控制,采用 Ba(NO_3)_2原料,在750℃即可表现出超导性,T_c 达86K。  相似文献   

9.
运用莱卡显微镜、X射线衍射仪等仪器设备,研究了添加元素Zn对Sn3.5Ag0.5Cu钎料合金微结构及性能的影响.结果表明,Zn与Cu、Ag形成化合物AgZn、CuZn3,能显著细化Sn3.5Ag0.5Cu钎料组织;添加元素Zn后的Sn3.5Ag0.5Cu钎料合金的显微硬度提高11%,蠕变抗力也得到明显提高;运用键参数函数理论分析了Zn对Sn3.5Ag0.5Cu钎料合金微结构及性能影响的作用机理.[作者单位].5Cu钎料;组织;性能;键参数函数  相似文献   

10.
Sn-9Zn-xAg钎料在Cu基材上润湿性能及界面组织的研究   总被引:2,自引:0,他引:2  
研究了添加合金元素Ag对Sn-9Zn无铅钎料显微组织、在铜基上的润湿性能及对钎料/铜界面组织的影响.研究结果表明:当Ag的含量(质量分数,下同)在0.1%~0.3%时,钎料中针状富Zn相逐渐减少,当Ag的含量在0.5%~1%时,钎料中出现Ag-Zn化合物相;当Ag的含量为0.3%时,钎料具有最好的润湿性能,当Ag的含量为0.5%~1%时,钎料的润湿性能下降;Sn-9Zn/Cu的界面处形成平坦的Cu5Zn8化合物层,当Ag含量为0.3%时,在Cu5Zn8化合物层上出现节结状的AgZn3化合物相,随着Ag含量的提高,这种节结状的AgZn3化合物相逐渐聚集长大成扇贝状的化合物层.  相似文献   

11.
近年来随着航空航天工业的发展,各类飞行器核心功能部件面临着使役环境愈发极端化的问题。超高速、高温等服役环境对各类零部件的整体性能提出了更高的要求,因此针对航空航天领域用高温钎料的研究尤为重要。在航空航天领域常用的高温钎料包括镍基钎料、钴基钎料、钛基钎料、锰基钎料、贵金属钎料和高熵钎料等,通常应用于不锈钢、高温合金、钛合金以及新型陶瓷材料等的钎焊连接。主要针对在航空航天领域中常用的几种高温钎料,对钎料的元素组成和特性进行总结,对钎料的成形特点和工艺进行介绍,对研究和应用现状进行分析,并对航空航天领域的钎料与钎焊技术提出建议与展望,以期为提升钎焊技术在航空航天领域的应用价值提供参考和指导。  相似文献   

12.
Al-Ti异种合金真空钎焊的研究   总被引:9,自引:0,他引:9  
在结合界面上生成层状的脆而硬的金属化合物(TiAl3,TiAl和Ti3Al)是Al-Ti异种合金焊接所存在的主要问题,本工作基一协内外研究成果和相关资料,利用正蛟设计在理,以Al-11.5Si近共晶合金为基,通过添加元素Sn和Ga形成9种钎料,并利用各新钎料对Al合金和Ti合金进行了真空钎焊,勇于强度试验和铺展性试验,对该9种钎料进行评定,试验结果表明,含10%Sn,0.20%GAa的Al-11.5Si铝基钎料铺展性和抗剪强度等方面都具有较好的性能,使Al-Ti异种合金构件达到较好的机械性能。  相似文献   

13.
综合评述了纳米材料增强复合钎料的研究与应用现状。首先介绍了纳米材料增强复合钎料的制备方法,讨论了机械混合法与原位合成法的工艺及特点,然后分别从金属颗粒、氧化物或其他化合物及碳纳米材料3个方面来介绍纳米材料对复合钎料微观组织及性能的影响。重点指出了具有优异性能的碳纳米管与石墨烯材料增强复合钎料的研究进展,并对其发展趋势进行分析和展望。  相似文献   

14.
利用有机胶体的黏附作用力改善待连接表面的界面张力,可为实现异种材料间的钎焊连接提供有利条件。以环氧树脂为黏性胶体,TiH_2粉为活性元素源,AgCu共晶合金箔为钎料,将TiH2与环氧树脂混合后涂敷在SiO_2f/SiO_2复合材料表面,并在此表面进行钎料润湿实验。结果表明:胶体黏附力对钎料的润湿铺展具有促进作用。将此工艺用于钎焊连接,可实现SiO_2f/SiO_2复合材料、Cf/SiC复合材料以及Al_2O_3陶瓷与Invar合金的冶金致密连接。  相似文献   

15.
邓云华  岳喜山  管志超 《材料导报》2018,32(14):2425-2430
采用镍基BNi2钎料钎焊制备了304不锈钢消音蜂窝,对蜂窝芯体与面板钎焊界面组织和蜂窝的力学性能进行了分析和测试,并研究了钎焊热循环次数对钎焊界面组织和蜂窝拉伸力学性能的影响,为实际工程应用确定未焊合缺陷补焊次数提供了依据。液态钎料的毛细作用使钎料沿蜂窝芯箔材表面铺展并与箔材发生显著的元素扩散反应,蜂窝芯与面板之间的钎缝由Ni、Cr、Si等互溶而成的Ni基固溶体组织组成,未生成脆性共晶组织或金属间化合物。钎料中的B和Si元素显著扩散于面板材料中,形成钎料-面板反应区,因B元素的沿晶界快速扩散效应,面板侧组织呈现晶界元素渗入特征。随着钎焊次数增加,钎料对母材的溶解和晶界渗透增加,钎焊界面组织发生显著变化。制备的304不锈钢消音蜂窝拉脱强度为7.21MPa,呈现板/芯界面附近蜂窝芯破坏特点,多次钎焊时蜂窝拉脱强度呈下降趋势。制备的304不锈钢消音蜂窝平压、侧压和弯曲力学性能测试过程均经历弹性变形、塑性变形和失稳三个阶段,强度值分别为5.67MPa、33.85MPa和105.87MPa,平压和弯曲失效模型为蜂窝失稳,侧压破坏除蜂窝失稳外,发生穿孔面板与蜂窝芯体剥离的现象。鉴于多次钎焊热循环对蜂窝拉脱强度的不利影响,建议304不锈钢蜂窝钎焊缺陷的最大补焊次数为一次。  相似文献   

16.
目的研究不同工艺参数下钎料Zn的添加对Al/Mg异种金属搅拌摩擦焊-钎焊焊接接头组织和性能的影响。方法以厚度为0.05 mm的纯Zn作为钎料,对3 mm厚的2A12-T4态铝合金和4 mm厚的AZ31变形镁合金,进行搅拌摩擦焊-钎焊的复合焊接,分析锌夹层的添加对接头微观组织与力学性能的影响。结果当添加Zn中间层时,接头钎焊区缓解了拉伸断裂趋势,在焊接速度为23.5 mm/min,旋转速度为375 r/min时,接头抗拉剪力达到5.5 k N,复合焊接接头的钎焊焊缝由搭接区、固相扩散区、钎焊区组成。结论钎料的添加有效阻止了Al-Mg系金属间化合物的形成。  相似文献   

17.
本文简述了真空电子钎焊用银钎料的特点,对银钎料的研究现状和发展方向进行了阐述,明确了目前银钎料的使用现状,对银钎料的后续研究提出了看法。  相似文献   

18.
热压氮化硅陶瓷的活性金属钎焊   总被引:1,自引:0,他引:1  
  相似文献   

19.
TiC陶瓷/NiCrSiB/铸铁钎焊连接的界面组织和强度分析   总被引:1,自引:0,他引:1  
采用NiCrSiB钎料对TiC陶瓷与铸铁进行钎焊连接,分析了接头的界面组织和剪切强度.结果表明:当连接规范一定时,在钎料内部、钎料与母材的界面处有TiC从TiC陶瓷侧扩散过来,同时在钎料内部和界面处有[Ni,Fe]和Ni基固溶体生成.当连接温度为1373K,连接时间为20 min时,接头的剪切强度最高可达78.6 MPa.  相似文献   

20.
用真空熔炼、惰性气体雾化法制备Ni-Cr-P金属粉末,再加入有机黏结剂高速搅拌,制备Ni14Cr10P膏状活性钎料。用制备好的焊膏真空钎焊C/C复合材料,测试钎焊接头的剪切强度,通过OM,SEM,EDS,XRD等对钎焊接头界面组织结构进行分析。结果表明:在钎焊温度1000℃、保温时间0.5 h条件下,获得的接头剪切强度达到28.6 MPa,然后随着钎焊温度上升或保温时间延长,钎焊接头强度下降;通过界面组织结构分析发现焊膏可以增加钎料层与C/C复合材料表面的接触面积,有利于堵塞C/C复合材料表面的孔隙。焊后在界面处形成了交错分布的Cr碳化物相缓冲层,使得界面呈现热膨胀系数梯度增加的结构,有助于缓解热失配,提高C/C复合材料钎焊接头强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号