首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
本文介绍了140Mb/s光通信系统接收机中所用的AGC主放大模块。此模块采用厚膜电路混合集成形式,将AGC电路、主放大器制作在29.1×13.9mm~2的陶瓷片上,封装在DHM24绝缘子壳内,带宽为200MHz(3dB),增益为50dB,AGC范围大于25dB。在四次群光纤通信系统试验中,接收机灵敏度为-39dBm(误码率10~(-9)),眼图清晰。  相似文献   

2.
本文介绍了 PIN-FET 光接收模块的电路设计、电路选择、性能及特点,研制了 GJF 351 型长波长三次群光接收模块,它是由一只高速、高效率、低噪声 A701型 InGaAs/InP PIN 管和一个以 CX55改进型 GaAs MES FET为输入端的跨阻三级放大器构成,采用薄膜电路技术混合集成。并探讨了提高可靠性的途径及给出测试结果。  相似文献   

3.
数字光接收机在数字光纤通信系统中的作用是将经光纤传输后衰减变形的微弱光脉冲信号通过光一电转换成为电脉冲信号,并给予足够的放大、均衡与定时再生还原成为标准的数字脉冲信号。 数字光接收机原理方框图如图1。它由光检测器(包括其偏压电路)、前置放大器、主放大器、自动增益控制电路(AGC)、均衡与时钟提取及判决电路组成。  相似文献   

4.
基于可变增益放大器AD8367,结合线性检波器AD8361和误差放大器AD820,为TD-LTE接收机射频前端设计了一个自动增益控制(AGC)电路,实物测试显示该AGC电路能在输入信号频率为240MHz,输入信号功率为-40dBm到-10dBm时,输出信号功率能稳定在0dBm处,分析了该AGC电路噪声对接收机整体噪声的影响,满足系统指标的要求。设计思维简洁,电路结构简单,可以方便地调节输出电平值,确保接收机正常工作。  相似文献   

5.
宽带大动态AGC电路设计   总被引:1,自引:0,他引:1  
贺欣 《电子设计工程》2012,20(8):167-170
自动增益控制电路是接收机模块中的关键控制电路之一,其作用是改善接收机的动态范围。具体分析了自动增益控制电路的工作原理以及AGC的分类方式。为了设计宽带大动态的AGC电路,分析了可变增益ADL5330和对数放大器AD8318的电路功能和主要性标,并利用这两款芯片设计了一种宽带大动态AGC模块,给出了典型电路及测试结果。与传统AGC电路相该电路结构简单、体积小,且能实现宽带、大动态、低噪声放大等功能。  相似文献   

6.
本文报导了140Mb/s混合集成光接收机的研制结果。接收机全部由厚膜电路集成模块组成。其主放带宽为200MHz(3dB),输出电压V_(pp)值为0.8V,接收灵敏度在10~(-9)误码率下为-39dBm。  相似文献   

7.
本文介绍了由前置放大器、主放大器、自动增益控制电路三部分组成的集成化光接收机模块。它具有外围接线简单、增益高、噪声低的特点。该模块采用厚、薄膜混合集成技术把元器件集成在三块23×14mm~2的微晶玻璃片上,封装在三块26×22mm~216引线的双列直插式管壳内。因而体积小、重量轻。在电子部34所GQSL_2-Ⅱ型二次群光端机上试用,其接收灵敏度达-49dBm(误码率为10~(-9)),光动态范围大于15dB。本文还简单介绍了混合集成光电子组件的厚、薄膜工艺流程。  相似文献   

8.
<正> 宏明无线电器材厂设计一所生产的UZFH型厚膜主中频放大器(简称“主中”电路)是通讯机等电子设备中重要的组成部分,它起着放大中频信号的作用。“主中”电路具有增益高、噪声系数小、体积小、使用方便等优点,主要用于各类通讯接收机、雷达接收机、电视传输等电子设备。  相似文献   

9.
本设计由三个模块电路构成:前级放大电路(带AGC部分)、后级放大电路和单片机显示与控制模块。在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。  相似文献   

10.
光接收机的设计是一个复杂的课题,珀松尼克(Personick)和戈尔(Goell)的研究己使这种设计最佳化。本文利用珀松尼克和戈尔关于光纤通信系统接收机的设计方法,研究了长波长光接收机的设计技术和光接收机灵敏度的理论计算,并进行了采用PIN-FET集成前放光接收器和分立元件PIN互阻抗前置放大器的实验。实验结果表明,PIN-FET集成组件具有较高灵敏度、电路简单和高可靠性的的优点。  相似文献   

11.
High-speed photoreceiver modules using silicon optical benches are described. These modules employ solder bumps for chip assembly and microstrip lines for electrical signal transmission. The assembly and wiring technologies are the same as those used in the planar lightwave circuit platforms we developed. A photoreceiver module consisting of a waveguide photodiode showed a very wide bandwidth greater than 20 GHz, and together with a spotsize-converted semiconductor optical amplifier, operated as an optical preamplifier that showed good receiver sensitivity of -20.3 dBm at 10 Gb/s nonreturn-to-zero  相似文献   

12.
设计了一种的低成本、低功耗的10 Gb/s光接收机全差跨阻前置放大电路。该电路由跨阻放大器、限幅放大器和输出缓冲电路组成,其可将微弱的光电流信号转换为摆幅为400 mVpp的差分电压信号。该全差分前置放大电路采用0.18 m CMOS工艺进行设计,当光电二极管电容为250 fF时,该光接收机前置放大电路的跨阻增益为92 dB,-3 dB带宽为7.9 GHz,平均等效输入噪声电流谱密度约为23 pA/(0~8 GHz)。该电路采用电源电压为1.8 V时,跨阻放大器功耗为28 mW,限幅放大器功耗为80 mW,输出缓冲器功耗为40 mW,其芯片面积为800 m1 700 m。  相似文献   

13.
Direct measurements of the noise figure of an erbium-doped fiber amplifier are described. With an amplifier gain as high as 36 dB, a noise figure as low as 4.1 dB was measured. Noise figures remained below 6 dB for signal wavelengths within the high gain (G>20 dB) region of the amplifier. An optical receiver sensitivity of -43 dBm at 1.8 Gb/s, corresponding to 215 photons/b, was achieved using the fiber amplifier as an optical preamplifier for a direct detection receiver  相似文献   

14.
A compact 40-Gb/s optical receiver module with an MU-connector interface has been developed. Its packaging has three main technical features. (1) Coplanar waveguide (CPW) patterns of the waveguide photodiode (WG-PD) and of the preamplifier IC in the facing area of the flip-chip structure are optimized for impedance matching. (2) A film carrier is used to connect the preamplifier IC to an electrical coaxial connector for electrical signal output. (3) An MU-connector is used as the optical interface to reduce the module size. Optimum design enabled a module size of 14.0 mm wide, 40.4 mm long, and 9.65 mm high. Measurements showed a 3-dB down bandwidth of the optical/electrical response of at least 50 GHz and a clear open eye pattern for a 40-Gb/s nonreturn-to-zero (NRZ) signal input. This optical receiver module is suitable for large-capacity communication network systems  相似文献   

15.
The authors developed several special circuits to minimize the decrease in speed caused by parasitics. The common-base circuit assures flat and wide frequency preamplifier response even when Vee is unstable because of bond wire inductance. Cascode interconnections between circuit blocks prevent waveform degradation due to line capacitance discharge. The high level of integration prevents the signal speed from decreasing due to chip interfaces and external interference. Using these circuits and Si-bipolar ESPER (emitter-base self-aligned structure with polysilicon electrodes and resistors) transistors whose fT was 28 GHz, the authors fabricated three ICs: a preamplifier with a 5.1 GHz bandwidth, a fully integrated automatic gain control (AGC) amplifier with a 3.6 GHz bandwidth, and a decision circuit that operates at 10.6 Gb/s. The authors used these ICs and an avalanche photodiode (APD) to construct a 5 Gb/s optical receiver with a minimum detectable optical power of -26.8 dBm. The speed of the Si ICs exceeded 5 Gb/s  相似文献   

16.
The gain, saturation power, and noise of an erbium-doped single-mode traveling-wave fiber amplifier operating at a wavelength λ=1.53 μm are characterized. In continuous-wave (CW) measurements amplification at 2 Gbit/s was demonstrated with up to 17-dB gain for 1×10-9 bit error rate at 1.531 μm and a 3-dB full bandwidth of 14 nm. From the determination of the fiber-amplifier's output signal-to-noise ratio versus input signal power during data transmission, it was concluded that, with signal levels used here, signal-spontaneous beat noise limited the receiver sensitivity improvement. With the fiber amplifier acting as an optical preamplifier of the receiver, the best sensitivity was -30 dBm, obtained after installing a polarizer at the fiber amplifier output to reject half of the applied spontaneous emission power. This sensitivity was 6 dB better than without the fiber amplifier, proving that the fiber amplifier can be used as a preamplifier  相似文献   

17.
The use of an Er3+ fiber preamplifier for microwave multiplexed systems and the use of an inline Er3+ amplifier in microwave multiplexed systems for signal distribution are reported. The improvement in receiver sensitivity as a preamplifier, without optical filtering, was 9 dB. No power penalty due to amplified spontaneous emission was found when the amplifier was used in a 30-channel signal distribution system  相似文献   

18.
A preamplifier with an automatic gain control (AGC) function based on a new circuit configuration suitable for monolithic integration is proposed as an approach for realizing optical receivers with wide dynamic ranges. This new preamplifier, intended for transmission systems operating above 100 Mb/s, is designed for fabrication using 3-/spl mu/m Si-bipolar IC technology. The fabricated IC exhibits a bandwidth of more than 220 MHz and an equivalent input noise current of about 3 pA//spl radic/Hz at a maximum transimpedance of 18 k/spl Omega/. To examine the AGC capability of the new preamplifier IC, a 140-Mb/s transmission experiment was carried out using a laser diode (LD) transmitter and a p-i-n receiver with its gain controlled by the new preamplifier. An optical dynamic range of 21.5 dB was achieved and thus it should be possible to realize optical receivers with wide dynamic ranges using this preamplifier.  相似文献   

19.
A traveling wave semiconductor optical amplifier is used as a receiver preamplifier in a quadrature-phase-shift-keyed subcarrier multiplexed system. The intensity-modulated signal from a 1509-m distributed feedback laser bears two 1-Gb/s data signals on a 5-GHz subcarrier. The receiver preamplifier yields a 9.2-dB sensitivity improvement to -29.2 dBm. The system noise sources are measured. Theoretical and measured bit error rates versus received power are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号