共查询到20条相似文献,搜索用时 15 毫秒
1.
基于高光谱成像技术的长枣表面农药残留无损检测 总被引:1,自引:0,他引:1
利用近红外高光谱成像技术对灵武长枣的表面农药残留进行无损检测研究。采用Kubelka-Munk校正和SavitzkyGolay卷积平滑对900~1 700nm波段范围内的原始光谱进行预处理,选取最优的预处理方法;运用偏最小二乘回归系数选择特征波长,建立全波段和特征波长下的偏最小二乘农药残留预测模型。结果表明,经过Kubelka-Munk+Savitzky-Golay卷积平滑处理后的光谱建模效果最好,且利用特征波长建立的长枣表面农药残留校正和验证模型的相关系数和均方根误差分别为0.86,0.85和0.000 32,0.000 33,优于全波段建立的模型。研究表明,采用高光谱成像技术对灵武长枣表面农药残留的无损检测是可行的。 相似文献
2.
在高光谱成像技术的基础上,提出了一种应用于水果表面农药残留的无损检测方法。对采集数据进行预处理和特征提取,通过细菌群体趋药性算法找到最优的最小二乘支持向量机参数,建立农残检测模型,并与最小二乘支持向量机模型进行比较,验证该模型的优越性和准确性。结果表明,基于连续投影法特征波长结合文中检测模型具有最高的检测精度,其准确率达97.92%。 相似文献
3.
以400~1 000nm高光谱系统获得鸡蛋样本的高光谱图像,利用蒙特卡洛法检测异常样本,采用不同预处理方法处理原始光谱;应用竞争性正自适应加权算法(Competitive Adaptive Reweighted Sampling,CARS)、遗传偏最小二乘法(Genetic Algorithms PLS,GAPLS)和间隔蛙跳法(Interval Random Frog,IRF)对预处理后光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘回归(Partial Least Squares Regression,PLSR)和最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)鸡蛋新鲜度预测模型。结果表明:标准正态变量变换(Standardized Normal Variate,SNV)法为最优预处理方法;利用CARS、GAPLS和IRF分别选出8,35,74个特征波长;基于GAPLS提取的特征波长的LS-SVM模型最优,其校正相关系数(Rc)为0.899,预测相关系数(Rp)为0.832。表明基于高光谱成像技术的鸡蛋新鲜度无损检测是可行的。 相似文献
4.
高粱作为粮食作物,其中残留的农药对人体危害巨大。本文基于高光谱成像(Hyperspectral Imaging,HSI)技术研究了高粱中农药残留种类的快速鉴别。采用不同预处理方法对高光谱数据进行预处理,通过建立的支持向量机(Support Vector Machine,SVM)模型发现标准正态变换(Standard Normal Variate,SNV)为最佳的预处理方法。使用类型提升算法(Type Boosting Algorithm,CatBoost)、梯度提升树(Gradient Boosting Decision Tree,GBDT)、竞争性自适应重加权采样法(Competitive Adaptive Reweighted Sampling,CARS)和主成分分析法(Principal Component Analysis,PCA)选择特征波长,对比特征波长建立的SVM模型结果发现CatBoost所选择的特征波长建模效果更好。分别建立了基于特征波长的BP神经网络自适应增强算法(Backpropagation Neural Network with Adaptive Boosting,BP-AdaBoost)、轻量梯度提升机(Light Gradient Boosting Algorithm, LGBM)、极度梯度提升(eXtreme Gradient Boosting,XGBoost)、SVM高粱农药残留分类模型,其中,BP-AdaBoost为最佳的分类模型,测试集平均分类正确率为95.17%。研究表明,高光谱成像技术结合BP-AdaBoost算法可以识别出高粱中农药残留的种类,为检测高粱农药残留类别提供了一种新的方法。 相似文献
5.
加工番茄虫眼及霉变的可见近红外高光谱成像检测 总被引:1,自引:0,他引:1
为了探求一种快速有效识别虫眼和霉变加工番茄的无损检测方法,利用高光谱成像技术,从光谱和图像2个角度对其进行检测。先借助可见近红外高光谱成像系统获取408~1 013nm的加工番茄高光谱图像数据,提取并分析感兴趣区域的平均光谱曲线进行主成分分析,根据各波段权重系数优选了550,750,900nm 3个特征波长;然后通过特征波长下图像的主成分分析,选择缺陷部位与正常区域强度对照最明显的第一主成分图像,通过掩模、阈值处理和形态学开运算等图像处理方法对缺陷番茄进行检测判别。虫眼、霉变和正常三类番茄的识别率分别为93.3%,90%,100%。同时利用上述3个特征波长进行波段比图像运算,并选择波段比550nm/750nm图像进行缺陷识别,虫眼、霉变和正常三类加工番茄的识别率分别为93.3%,96.7%,100%。研究结果表明,二次主成分分析和波段比检测算法均可以有效地识别缺陷加工番茄。另外研究中仅选用了3个特征波段,数据量大大减少,为搭建开发适于加工番茄缺陷的多光谱在线检测系统提供了可能。 相似文献
6.
水果和蔬菜是人们日常饮食中最重要的组成部分之一.农药在果蔬的种植过程中起到病虫草害的防治作用,但是农药并不能全部被植物吸收,大部分仍残留在果实表面.近年来因过量使用农药而造成的农药中毒现象屡见不鲜,使得果蔬的食用安全性受到人们的广泛关注.目前,常见的农药残留检测方法虽然有很多,但是精度高的检测过程较为复杂,且检测时间较长,仅能用于实验室农药残留的精确分析和检测;化学检测方法一般是破坏性检测,具有消耗有机试剂、制样繁琐且检测成本高等弊端.而高光谱图像检测方法则能够达到实时、高效、快速、无损检测的目的. 相似文献
7.
高光谱成像(hyperspectral imaging,HSI)技术是目前用于农产品品质无损评估的最有前途的技术之一.现代社会要求检测技术可以做到对农产品的病害严重程度有可靠准确的评估,高光谱成像技术作为一种非破坏性的检测技术,可用于农产品的无损检测,结合适当的光谱预处理使其更加全面.本文对高光谱成像原理、设备以及图像... 相似文献
8.
高光谱图像技术结合光谱技术与计算机图像技术两者的优点,可获得大量包含连续波长光谱信息的图像块,其图像信息可检测水果的外部品质,光谱信息则可用于水果内部品质的检测,达到根据水果内、外部综合品质进行分类的目的. 综述了国内外将该技术应用于水果品质检测方面的研究进展,提出了利用高光谱图像技术检测苹果轻微损伤的方法,利用500~900nm的高光谱图像数据,通过主成分分析提取547nm波长下的特征图像. 相似文献
9.
10.
基于近红外高光谱成像技术的涩柿SSC含量无损检测 总被引:1,自引:0,他引:1
对150个涩柿采集900~1 700nm波段的近红外高光谱图像信息,利用蒙特卡罗—无信息变量消除(MC-UVE)和连续投影算法(SPA)对感兴趣区域光谱进行波长优选。通过MC-UVE-SPA优选出924.69,928.05,1 112.72,1 270.91,1 365.3,1 402.42,1 453.06,1 547.69nm 8个特征波长,对应的光谱反射率作为柿子可溶性固性物含量(SSC)检测的偏最小二乘回归(PLSR)检测模型输入,其预测集相关系数rpre=0.942,预测集均方根误差RMSEP=1.009°Brix。结果表明,MC-UVE-SPA可以有效提取与柿子SSC含量相关的特征信息,从而保留较少的波长建立较好的预测模型。 相似文献
11.
目的 使用高光谱成像技术实现对芒果轻微损伤的无损识别。方法 在可见光-近红外波长范围内采集完好芒果和损伤芒果的高光谱图像,并提取相应的感兴趣区域(regions of interest, ROI)获得样本高光谱数据。经过多种预处理方法比较,选择光谱预处理方法。使用竞争性自适应重加权算法(competitiveadaptivereweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)分别对预处理后的光谱提取特征波长,并分别建立了多元线型回归(multiplelinearregression,MLR)模型和偏最小二乘回归(partialleastsquaresregression,PLSR)模型。结果 选择多元散射校正(multiplicative scatter correction, MSC)作为光谱预处理方法。针对芒果轻微损伤识别,CARS-MLR模型识别效果最好,其校正集相关系数为0.881,预测集相关系数为0.821,校正集均方根误差(calibration set root mean squa... 相似文献
12.
13.
14.
高光谱成像技术具有“图谱合一”的特点,其汇集了传统成像和光谱技术的特点,能同时获得待测农产品样本的图像信息和光谱信息,因此该技术既可以通过成像技术检测物体的外部特征,又可以通过光谱技术得到农产品的内部品质和食用安全性信息,包括品种分类、理化指标测定、真菌感染检测和农药残留检测等。与传统检测方法相比,高光谱成像以其检测过程中前处理简单、无污染、无破坏性的特点,在农产品无损检测领域有所应用。从高光谱成像的理论基础出发,对其图像获取与分析方式进行概述,并阐述了高光谱成像技术在农产品无损检测领域中近五年的研究进展,以期为农产品的品种分类、营养品质和食用安全性评估方法提供参考。 相似文献
15.
以"红富士"苹果为研究对象,提出基于高光谱成像技术结合图像分割技术的苹果表面缺陷的无损检测方法。采用高光谱图像采集系统(400 nm~1 000 nm)采集完好无损和表面有缺陷苹果的高光谱图像;对采集到的高光谱图像进行最小噪声分离变换,提取感兴趣区域的平均光谱反射率;采用图像分割技术提出苹果表面缺陷的无损检测方法。结果表明:采用最小噪声分离变换可有效地消除苹果高光谱图像中的噪声;在700 nm~800 nm以及900 nm~1 000 nm波段范围内完好无损和表面有缺陷的苹果的光谱反射率值具有明显的差异,同时选取特征波长717.98 nm处的光谱反射率值小于0.6以及982.59 nm处的光谱反射率值大于0.52作为区分苹果正常区域和表面缺陷区域的阈值条件,进一步利用阈值分割方法对80个完好无损苹果和40个表面有缺陷苹果的正确识别率分别为97.5%和95%。表明高光谱成像技术结合图像分割技术可实现苹果表面缺陷的无损检测。 相似文献
16.
利用可见/近红外高光谱成像技术实现荷斯坦奶牛、秦川牛、西门塔尔牛三个品种牛肉的快速无损鉴别。首先,对原始光谱进行预处理并对样本集进行划分;应用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)和无信息变量消除算法(UVE)对预处理后的光谱数据提取特征波长;结合偏最小二乘判别模型(PLS-DA)、K最近邻(KNN)模型及支持向量机(SVM)模型进行全波段及特征波段鉴别分析。结果表明,一阶导数(FD)法为最优预处理方法,利用光谱-理化值共生距离法(SPXY)法划分后的样本模型预测性能最好;利用CARS、SPA和UVE分别选出24、17和19个特征波长;基于CARS法提取的特征波长所建的RBF-SVM模型的校正集与预测集正确率分别为100%、98.82%。由此可见,基于高光谱成像技术能够获得较好的牛肉品种鉴别效果。该研究可为牛肉品种的快速无损鉴别提供参考。 相似文献
17.
高光谱成像技术在肉类安全品质预测及分选分级方面已取得了诸多成果。作者重点综述了其在肉类有毒有害物质检测、肉类掺假检测、肉类分选分级中的研究现状,讨论了其存在的不足及发展趋势,以期为肉类安全无损检测方法的研究提供参考。 相似文献
18.
细菌总数是反映肉品被污染和腐败状况的重要指标,为寻找快速有效的冷鲜羊肉表面细菌总数无损检测方法,本研究利用近红外高光谱(900~1700nm)成像技术对20d贮藏期内的冷鲜羊肉表面细菌总数进行快速无损检测。由80个样本表面高光谱图像获取目标区域反射光谱,采用多元散射校正和二阶导数相结合(MSC+SD)的方法进行预处理。将用主成分分析法对光谱降维后获得6个特征波长作为输入变量,分别采用偏最小二乘回归(PLS)、误差反向传递人工神经网络(BP-ANN)和径向基函数人工神经网络(RBF-ANN)三种方法建立模型对冷却羊肉表面细菌总数进行预测,均取得较好预测结果,其中,神经网络建模效果优于PLS,预测效果最好的是RBF-ANN模型,相关系数R为0.9988,均方根误差RMSEP为0.2507。结果表明,NIR高光谱图像技术可用于冷鲜羊肉表面细菌总数的快速无损检测。 相似文献
19.
为探究基于高光谱成像技术预测灵武长枣VC含量的可行性并寻找最佳预测模型。采集100?个长枣样本在波长400~1?000?nm处的高光谱图像,对光谱数据进行预处理;应用遗传算法(genetic algorithm,GA)、连续投影算法(successive projection algorithm,SPA)和竞争性正自适应加权(competitive adaptive reweighted sampling,CARS)算法对原始光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘(partial least squares regression,PLS)和最小二乘支持向量机(least squares support vector machine,LSSVM)VC含量预测模型。结果表明,采用标准正态变换预处理算法效果最优,其PLS模型的交叉验证相关系数为0.839?5,交叉验证均方根误差为16.248?2;利用GA、SPA和CARS从全光谱的125?个波长中分别选取出12、5?个和26?个特征波长;基于CARS建立的PLS模型效果最优,其Rc、Rp、校正均方根误差、预测均方根误差分别为0.896?2、0.889?2、10.746?2%、12.145?3%。研究结果表明基于高光谱成像技术对灵武长枣VC含量的无损检测是可行的。 相似文献