首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient solutions of the transverse depleted-pump and Stokes field distributions are obtained for an externally-pumped solid-state Raman laser. The results are shown to agree well with experiment measurements made on a Q-switched Nd:YAG pumped solid-state barium nitrate Raman laser. The theory of intracavity Raman conversion of real optical beams is presented, and the mechanisms responsible for Raman beam cleanup and mode confinement are qualitatively discussed and modeled by computer simulations.  相似文献   

2.
Nonlinear formation of holographic images of obscurations in laser beams   总被引:1,自引:0,他引:1  
Computer models are used to simulate the nonlinear formation of images of obscurations in laser beams. The predictions of the model are found to be in good agreement with measurements conducted in the nonlinear regime corresponding to a typical solid-state laser operation. In this regime, peak-to-mean fluence ratios large enough to induce damage in optical components are observed. The amplitude of the images and their location along the propagation axis are accurately predicted by the simulations. This indicates that the model is a reliable design tool for specifying component staging and optical specifications to avoid optical damage by this mechanism.  相似文献   

3.
Propagation of flat-topped multi-Gaussian laser beams   总被引:9,自引:0,他引:9  
The multi-Gaussian beam shape is proposed as a model for aperture functions and laser beam profiles that have a nearly flat top but whose sides decrease continuously. Beams and apertures of this type represent a simple, elegant, and intuitive alternative to super-Gaussian beams, which are important in a number of applications such as laser resonator design. Analytical formulas are developed for the propagation of these beams through free space and optical systems representable by ABCD matrices.  相似文献   

4.
复宗量双曲正弦高斯光束的传输特性   总被引:2,自引:0,他引:2  
对复宗量双曲正弦高斯(EshG)光束的一些基本特性进行了研究。由Collins公式出发推导出了光束通过近轴ABCD光学系统传输的场分布函数,根据二阶矩的定义和光束在近轴ABCD光学系统中的传输公式推导出了光束通过近轴ABCD光学系统光斑尺寸的解析表达式。得到了复宗量双曲正弦高斯光束在自由空间传输时束腰宽度和位置的解析表达式以及M2因子的表达式。对光强分布、光斑尺寸、束腰宽度及其位置和M2因子进行了数值计算,并对计算结果作了分析。本文所得结果具有广泛的意义,因为正弦高斯光束、双曲正弦高斯光束和复宗量正弦高斯光束均可视为其特例。  相似文献   

5.
Wong SK  Mathieu P  Pace P 《Applied optics》1994,33(9):1686-1690
A high-energy eye safe laser source at 1.54 μm is demonstrated experimentally by using a hybrid system of stimulated Raman scattering and optical parametric amplification pumped by a single 1.06-μm Nd:YAG laser source. This system overcomes some of the technical problems that occur in conventional eye safe lasers, such as optical breakdown and thermal blooming in the Raman laser, and thermal conduction problems in the erbium-doped glass solid-state laser that limit the repetition rate when high-energy output is sought. Thus this hybrid design provides a simple system that could provide a high pulse energy output (> 50 mJ) at a repetition rate of greater than 10 Hz.  相似文献   

6.
The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 108 K and 1011 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.  相似文献   

7.
Lehmberg RH  Chan Y 《Applied optics》2005,44(14):2805-2817
Induced spatial incoherence (ISI) has been proposed for KrF laser drivers to achieve the high degree of spatial beam uniformity required for direct-drive inertial confinement fusion. Although ISI provides ultrasmooth illumination at the far field of the laser, where the target is located, it can still allow the beams in the quasi-near field to develop a time-averaged spatial structure. This speckle, which arises primarily from random-phase aberration, builds up as the laser beams propagate away from the pupil plane located at the final amplifier stage; it is distinct from any structure imposed by gain nonuniformities in the amplifiers. Because of the spatial incoherence, the speckle is significantly smaller than that experienced by coherent beams. Nevertheless, it remains a damage issue, especially for the long beam delay paths required in angularly multiplexed KrF lasers. We develop a novel algorithm for calculating the time-integrated intensities; compare simulations and measurements of the near-field speckle in the Nike KrF laser; and explore options, such as aberration reduction and optical relaying, for controlling the problem in future angularly multiplexed KrF drivers.  相似文献   

8.
National Ignition Facility system alignment   总被引:1,自引:0,他引:1  
The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37?cm square beams, each generating up to 9.6?kJ of 351?nm laser light in a 20?ns beam precisely tailored in time and spectrum. The Facility houses a massive (10?m diameter) target chamber within which the beams converge onto an ~1?cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5?m×2?m×1?m) line-replaceable optics assemblies to within ±1?mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10?min and alignment to target chamber center within 44?min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50?μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.  相似文献   

9.
A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.  相似文献   

10.
Gallium phosphide nanowires with a most probable diameter of approximately 20.0 nm and more than 10 microns in length have been synthesized by pulsed laser vaporization of a heated GaP/5% Au target. The morphology and microstructure of GaP nanowires have been investigated by scanning electron microscopy and transmission electron microscopy. Twins have been observed along the crystalline nanowires, which have a growth direction of [111]. Raman scattering shows a 4 cm-1 downshift of the longitudinal optical phonon peak in the nanowire with respect to the bulk; the transverse optical phonon frequency and line width are, however, the same as in the bulk. The quantum confinement model first proposed by Richter et al. cannot explain the observed behavior of the Raman modes.  相似文献   

11.
用于低能X射线段的掠入射光栅摄谱仪   总被引:1,自引:1,他引:0  
介绍一种新颖的用于研究激光等离子体的掠入射光栅摄谱仪。掠入射光栅摄谱系统由三部分组成:掠入射光栅摄谱仪、四维精密微调装置和一个含光纤传象束、摄象机、监示器和激光准直仪等构成的瞄准系统。文中论述了掠入射光栅摄谱仪的光路设计、机械设计特点和性能实验结果。  相似文献   

12.
Park YH  Lee DW  Kong HJ  Kim YS 《Applied optics》2008,47(20):3646-3650
A doubly shifted Raman laser using CH(4) gas has been developed for 2.8 microm generation, pumped by a Nd:YAG laser with 65.5 mJ at 17 ns. A dichroically coated meniscus-type lens is modified to utilize the backward stimulated Brillouin scattering and backward Stokes beams from a previous laser design [Appl. Opt.46, 5516-5521 (2007)APOPAI0003-693510.1364/AO.46.005516]. A maximum output energy of 4.76 mJ at 2.80 microm wavelength has been achieved in the cascaded resonator. A maximum conversion efficiency of 8.9% has been achieved at a CH(4) gas pressure of 600 psi. The obtained spatial beam profile is quite smooth, and its output pulse width is 10 ns.  相似文献   

13.
Mode properties produced by a corner-cube cavity   总被引:4,自引:0,他引:4  
Shen M  Wang S  Hu L  Zhao D 《Applied optics》2004,43(20):4091-4094
The laser mode properties of a corner-cube resonator, in which the corner cube is the key element and a flat mirror is used as the output mirror, are analyzed by a numerical simulating method. Examples of numerical calculations are given to illustrate mode propagation through an optical system. The simulated results agree with the experimental ones.  相似文献   

14.
Three-dimensional (3-D) effects in short deep beams without stirrups that failed in shear were investigated experimentally and analytically. Two deep beams with a shear span to depth ratio (a/d) of 0.5 and with different beam widths were tested. The effect of beam width on load-carrying capacity, failure mode, crack pattern and 3-D behavior was investigated, and shape effect due to beam width was clarified. In addition, the beams were analyzed by the 3-D rigid-body-spring model (RBSM). RBSM is a discrete form of modeling that presents realistic behavior from cracking to failure, and 3-D RBSM is applicable to simulate 3-D behavior as well as the confinement effect of concrete. Analytical results in terms of load–displacement curves and crack pattern are compared with the experimental results. Three-dimensional deformations, strut widths and cross-sectional stress distribution are investigated analytically and compared with the experimental results to determine 3-D behavior in detail. The 3-D effects in short deep beams are clarified.  相似文献   

15.
16.
We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.  相似文献   

17.
Nonlinear optical beam propagation for optical limiting   总被引:8,自引:0,他引:8  
We implement numerical modeling of high-energy laser-pulse propagation through bulk nonlinear optical materials using focused beams. An executable program with a graphical user interface is made available to researchers for modeling the propagation of beams through materials much thicker than the diffraction length (up to 10(3) times longer). Ultrafast nonlinearities of the bound-electronic Kerr effect and two-photon absorption as well as time-dependent excited-state and thermal nonlinearities are taken into account. The hydrodynamic equations describing the rarefaction of the medium that is due to heating are solved to determine thermal index changes for nanosecond laser pulses. We also show how this effect can be simplified in some cases by an approximation that assumes instantaneous expansion (so-called thermal lensing approximation). Comparisons of numerical results with several Z-scan, optical limiting and beam distortion experiments are presented. Possible application to optimization of a passive optical limiter design is discussed.  相似文献   

18.
Coherent anti-Stokes Raman spectroscopy (CARS) is a nonlinear optical wave mixing process that is used in gas-phase systems to determine the energy distribution of the probed species (usually N2) and, through a fitting procedure, the temperature giving rise to it. CARS signal strengths are maximized when the phase matching condition is met. Because gases are generally non-dispersive, this phase matching condition can be found geometrically as a function of the crossing angles between the CARS beams and their wavelengths. In addition, perfect phase matching in non-dispersive media occurs automatically for collinear beams. To improve spatial resolution, however, intersecting the laser beams is desirable. Being a third-order process, phase matching for CARS in gases typically requires three input laser beams. This paper discusses and demonstrates the issues of phase matching for CARS when the medium is dispersive, and the ability for CARS phase matching to occur with only two crossed laser beams (one pump and one probe). This two-beam X-CARS in dispersive media can be used as an alignment tool for gas-phase CARS and may be relevant as a simpler diagnostic in high-pressure environments. The paper also discusses the effects of non-ideal phase matching in dispersive and non-dispersive media.  相似文献   

19.
A spatial signal cannot be converted from a laser wavelength to a stimulated Raman scattering wavelength if the laser intensity is too weak to obtain the stimulated Raman. The addition of high intensity spatial noise can help the Raman excitation if averaging occurs in the nonlinear system to restore the spatial signal. In order to have a sufficient quality of spatial information transfer, optimization of the noise intensity dependent on the signal intensity must be carried out. A model based on this idea is studied.  相似文献   

20.
Standard Reference Materials SRMs 2241 through 2243 are certified spectroscopic standards intended for the correction of the relative intensity of Raman spectra obtained with instruments employing laser excitation wavelengths of 785 nm, 532 nm, or 488 nm/514.5 nm. These SRMs each consist of an optical glass that emits a broadband luminescence spectrum when illuminated with the Raman excitation laser. The shape of the luminescence spectrum is described by a polynomial expression that relates the relative spectral intensity to the Raman shift with units in wavenumber (cm(-1)). This polynomial, together with a measurement of the luminescence spectrum of the standard, can be used to determine the spectral intensity-response correction, which is unique to each Raman system. The resulting instrument intensity-response correction may then be used to obtain Raman spectra that are corrected for a number of, but not all, instrument-dependent artifacts. Peak area ratios of the intensity-corrected Raman spectrum of cyclohexane are presented as an example of a methodology to validate the spectral intensity calibration process and to illustrate variations that can occur in this measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号