首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel anticorrosion packaging nanocomposite composed of LLDPE (linear low‐density polyethylene), nano‐sized Cu, and exfoliated dickite was prepared via melt mixing combined with melt extruding process. X‐ray diffraction and transmission electron microscopy (TEM) were employed to characterize the resultant nanocomposite. The results showed that most dickite layers were exfoliated and the nano‐Cu particles were distributed uniformly in the polymer matrix. The characteristic properties of the Cu/dickite/LLDPE nanocomposite were investigated using salt spray test, thermogravimetry analysis, mechanical test, and antibacterial test. The salt spray test results showed that exfoliated dickite and nano‐Cu improved the anticorrosion properties of the Cu/dickite/LLDPE nanocomposite in simulated ocean environment, respectively. Furthermore, the coexistence of exfoliated dickite and nano‐Cu in Cu/dickite/LLDPE nanocomposite produced a synergistic effect on enhancing the anticorrosion properties. Additionally, the co‐incorporation of exfoliated dickite and nano‐Cu in LLDPE matrix also improved the thermal‐oxidative stability and mechanical properties of the polymer matrix. The bactericidal properties evaluation showed that the Cu/dickite/LLDPE nanocomposite had better bactericidal ability because of the presence of nano‐Cu in LLDPE matrix. POLYM. COMPOS., 34:1061–1070, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
采用直接注射法制备HDPE/LLDPE/OMMT纳米复合材料,采用透射电子显微镜研究 HDPE/LLDPE/0MMT纳米复合材料的微观结构,研究有机蒙脱土含量对纳米复合材料性能的影响.透射电子显微镜结果显示,制备的HDPE/LLDPE/OMMT纳米复合材料是一种半剥离型的纳米复合材料.结果表明:蒙脱土的加入大大提高了纳米复合材料的力学性能和热变形温度.当有机蒙脱土质量含量仅为6%时,屈服强度和拉伸模量分别提高14.0%和59.7%,弯曲强度和弯曲模量分别提高了14.2%和60.O%.  相似文献   

3.
PVC/Poly(ε‐caprolactone) (PCL)/organophilic‐montmorillonite (OMMT) and PVC/Polylactide (PLA)/OMMT nanocomposites were prepared by a two‐step process. PCL/OMMT and PLA/OMMT master batches were prepared by melt blending using a two‐roller mill first, and then they were blended with PVC via extrusion. PVC/OMMT nanocomposites were also prepared using a two‐roller mill. Morphology, mechanical properties, and thermal stability were investigated. The formation of exfoliated or intercalated nanocomposites was confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Only the PVC/PCL/OMMT nanocomposite showed both higher tensile strength and stiffness than unfilled PVC. Atomic force microscopy (AFM) indicated dependency of this behavior not only on the clay dispersion, but also on the adhesion between the OMMT and the polymer matrix. Furthermore, scanning electron microscopy (SEM) showed that the large plastic deformation of the PVC/PCL matrix also contributed to the strength increase of the PVC nanocomposites. The effect of PCL/OMMT on the improvement of the thermal stability of PVC was remarkable while the effect of PLA/OMMT was moderate. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   

4.
通过熔融共混法制备了线性低密度聚乙烯/有机蒙脱土(LLDPEtOMMT)纳米复合材料,采用X-射线衍射分析(XRD)和透射电镜(TEM)对材料的结构进行表征,研究了OMMT的用量对LLDPE/OMMT纳米复合材料力学性能及阻燃性能的影响。结果表明,当OMMT的用量为30%(重量百分比)8寸,材料的极限氧指数(LOI)从180%提高到23.8%,热释放速率峰值(PHRR)从LLDPE的771.9kW/m2下降到5113kW/m2,下降幅度高达33.8%,表现出较好的阻燃性能;同时材料也呈现出良好的力学性能。  相似文献   

5.
In this study, Ca2+‐montmorillonite (Ca2+‐MMT) and organo‐montmorillonite (OMMT) were modified by three compatibilizers with different degrees of polarity [poly(ethylene glycol) (PEG), alkyl‐PEG, and polypropylene (PP)‐g‐PEG]. PP/MMT nanocomposites were prepared by melt blending and characterized using X‐ray diffraction and transmission electron microscopy. The results showed the degree of dispersion of OMMT in the PP/PP‐g‐PEG/OMMT (PMOM) nanocomposite was considerably higher than those in the PP/PEG/OMMT and PP/alkyl‐PEG/OMMT nanocomposites, which indicated that the dispersion was relative to the compatibility between modified OMMT and PP matrix. Linear viscoelasticity of PP/MMT nanocomposites in melt states was investigated by small amplitude dynamic rheology measurements. With the addition of the modified MMT, the shear viscosities and storage modulus of all the PP/MMT nanocomposites decreased. It can be attributed to the plasticization effect of PEG segments in the three modifiers. This rheological behavior was different from most surfactant modified MMT nanocomposites which typically showed an increase in dynamic modulus and viscosity relative to the polymer matrix. The unusual rheological observations were explained in terms of the compatibility between the polymer matrix and MMT. In addition, the mechanical properties of PP/MMT nanocomposites were improved. A simultaneous increase in the tensile strength and toughness was observed in PP/PMOM nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
OMMT分散形态对POE/OMMT复合材料性能的影响   总被引:2,自引:1,他引:1  
用熔融插层法制备了乙烯-1-辛烯共聚物(POE)/有机蒙脱土(OMMT)复合材料和马来酸酐接枝POE(POE-g-MAH)/OMMT纳米复合材料.用透射电子显微镜(TEM)和X射线衍射(XRD)分析了OMMT在两种基体中的分散形态;采用热重(TG)分析仪和锥形量热仪研究了两种复合材料的热稳定性和阻燃性能,同时考察两种复...  相似文献   

7.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

8.
采用熔融插层法制备了聚丙烯/有机改性蒙脱土(PP/OMMT)纳米复合材料,研究了OMMT用量对PP基体力学性能和阻燃性能的影响,利用透射电镜(TEM)分析了OMMT在PP基体中的分散性。结果表明:OMMT的加入有助于提高PP基体的力学性能和阻燃性能;熔融插层法可以使PP的大分子链有效地插入OMMT的片层之间;随着OMMT用量的增加,其在PP基体中的分散性变差。  相似文献   

9.
This article focuses on structural, thermal, and mechanical properties of nanocomposites in dependence of preparation method and poly(methyl mathacrylate) (PMMA)/organically modified montmorillonite (OMMT) ratio. PMMA/OMMT nanocomposites were prepared by bulk polymerization and by melt compounding. Properties of nanocomposites of the same composition prepared by the two methods were compared. It was observed that nanocomposites prepared via melt compounding at 200°C had a highly oriented structure with lower interlayer spacing values than nanocomposites prepared via bulk polymerization. Two reasons for the observed smaller interlayer spacing obtained by melt compounding were identified. The first is enhanced PMMA penetration and/or formation between layers in the case of bulk polymerization, which was confirmed by determination of stronger interactions between OMMT and PMMA by Soxhlet extraction, infrared spectroscopy, and differential dynamic calorimery. The second reason for smaller interlayer spacing for nanocomposites prepared by melt compounding is organic modifier degradation during melt compounding process, which was confirmed by thermogravimetric analysis. Both reasons lead to the fracture of melt compounded nanocomposites on the OMMT‐polymer interface, which was observed by scanning electron microscopy. For nanocomposites with disoriented structure and larger interlayer spacing prepared via bulk polymerization the fracture occurred in the polymer matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
宋国君  李培耀  谷正  孙翠华  王立 《化工进展》2012,31(8):1775-1780,1785
选择不同种类的有机蒙脱土(OMMT)和不同聚合物种类,采用不同加工条件和工艺,利用机械混炼法或挤出法制备出了不同亚微观形态的聚合物/有机蒙脱土纳米复合材料。首先通过研究具有不同的改性层间距的OMMT,发现改性后层间距的增大有利于聚合物分子的插层及蒙脱土片层的剥离,有利于制备剥离型纳米复合材料,并用示意图简要说明了形成过程;而同一种OMMT在具有不同分子结构的聚合物中,利用实例(高密度、低密度、线型低密度聚乙烯)以及简易示意图说明了聚合物分子链结构对于制备的纳米复合材料的亚微观形态的影响机理。在加工工艺条件中,加工过程中的剪切力大小是主要影响因素,通过以挤出法和机械混炼法制备的PP/OMMT与EPDM/OMMT纳米复合材料的TEM结果对比分析,说明剪切力的增大有利于蒙脱土片层的分离,更倾向于制备出剥离型纳米复合材料。  相似文献   

11.
谷正  宋国君  王宝金   《化工进展》2007,26(12):1767-1770
采用熔体插层法制备了氢化丁腈橡胶/有机蒙脱土纳米复合材料,采用透射电镜和X射线衍射仪对复合材料的结构进行了表征,并研究了复合材料的应力应变行为、耐老化性能、耐溶剂性能和动态力学性能。实验结果表明:制备了一种插层型纳米复合材料,复合材料的耐老化性能和耐溶剂性能良好,并且随蒙脱土含量的增大而增加;动态黏弹谱(DMA)测试显示,纳米复合材料的玻璃化转变温度升高,且具有较低的滚动阻力,复合材料的动态力学性能优良。  相似文献   

12.
Nanocomposites based on thermoplastic polyurethane (TPU) and organically modified montmorillonite (OMMT) were prepared by melt blending. Organically modified nanoclay was added to the TPU matrix in order to study the influence of the organoclay on nanophase morphology and materials properties. The interaction between TPU matrix and nanofiller was studied by infrared spectroscopy. Morphological characterization of the nanocomposites was carried out using X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy techniques. The results showed that melt mixing is an effective process for dispersing OMMT throughout the TPU matrix. Nanocomposites exhibit higher mechanical and thermal properties than pristine TPU. All these properties showed an increasing trend with the increase in OMMT content. Thermogravimetric analysis revealed that incorporation of organoclay enhances the thermal stability of nanocomposites significantly. Differential scanning calorimetry was used to measure the melting point and the glass transition temperature (Tg) of soft segments, which was found to shift toward higher temperature with the inclusion of organoclays. From dynamic mechanical thermal analysis, it is seen that addition of OMMT strongly influenced the storage and loss modulus of the TPU matrix. Dynamic viscoelastic properties of the nanocomposites were explored using rubber process analyzer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
聚乙烯(PE)/OMMT纳米复合材料的结构、形态和性能   总被引:7,自引:0,他引:7  
选择一种新型的有机改性蒙脱土(OMMT),在不加任何相容剂的条件下,利用熔融挤出法分别制备出了剥离型高密度聚乙烯/蒙脱土纳米复合材料、插层型线型低密度聚乙烯/蒙脱土和低密度聚乙烯/蒙脱土纳米复合材料。利用透射电子显微镜观察制备的复合材料的亚微观分散形态,确定了制备出的纳米复合材料的类型,并对不同亚微观结构形态进行了分析讨论,得出了不同分子结构影响纳米复合材料形成不同分散形态的结论;对于3种纳米复合材料的物理性能测试结果表明,不同亚微观分散形态的纳米复合材料的纳米效应不同,对物理性能的影响各有不同,对于聚合物/蒙脱土纳米复合材料的深入研究具有重大意义,同时分散均匀的纳米复合材料结构对于进一步研究聚乙烯纳米膜的气体阻隔性等性能奠定了良好的基础。  相似文献   

14.
This paper reports on morphology, rheology and dynamic mechanical properties of polypropylene (PP)/ethylene vinyl acetate (EVA) copolymer/clay nanocomposite system prepared via a single step melt compounding process using a twin screw micro-compounder. Scanning electron microscopic (SEM) investigations revealed that the dispersed phase droplet size was reduced with incorporation of an organo-modified montmorillonite (OMMT). This reduction was more significant in presence of a maleated PP (PP-g-MAH) used as compatibilizer. Phase inversion in the compatibilized blends caused a further decrease in PP droplet size. The OMMT gallery spacing was higher in nanocomposites with EVA as matrix which could be attributed to higher tendency of OMMT nanoparticles towards EVA rather than PP. This enhanced tendency was confirmed by rheological analysis too. Transmission electron microscopy (TEM) results also showed that the majority of OMMT nanoparticles were localized on the interface and within EVA droplets. According to dynamic mechanical analysis, the compatibilized nanocomposites showed higher storage and loss moduli due to better dispersion of OMMT layers. The modulus enhancement of nanocomposites as a function of OMMT volume fraction was modeled by Halpin-Tsai’s-Nielsen expression of modulus for nanocomposites. The results of modeling suggested that the aspect ratio of the intercalated OMMT, in the form of Einstein coefficient (K E), plays a determining role in the modulus enhancement of nanocomposites.  相似文献   

15.
Poly(vinyl chloride) (PVC)/organophilic‐montmorillonite (OMMT) nanocomposites were prepared by direct melt intercalation. PVC/compatibilizer ((vinyl acetate) copolymer (VAc))/OMMT nanocomposites were also prepared by melt intercalation by a masterbatch process. The effect of OMMT content on the nanostructures and properties of nanocomposites was studied. The nanostructures were studied by wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). The linear viscoelastic properties and dynamic mechanical properties of PVC/OMMT nanocomposites were also investigated by an advanced rheometric expansion system (ARES) rheometer. The results showed that partially exfoliated and partially intercalated structures coexisted in the PVC/OMMT and PVC/VAc/OMMT nanocomposites. The mechanical properties test results indicated that the notched Charpy impact strengths of nanocomposites were improved compared to that of pristine PVC and had a maximum value at 1 phr OMMT loadings. The compatibilizer could further improve the impact strengths. But the existence of OMMT decreased the thermal stability of PVC/OMMT and PVC/VAc/OMMT nanocomposites. The linear viscoelastic properties test results indicated the dependence of G′ and G″ on ω shows nonterminal behaviors, and they had better processibility compared with pristine PVC. However, the glass transition temperatures of PVC/OMMT nanocomposites almost had little change compared to that of pristine PVC. POLYM. COMPOS., 27:55–64, 2006. © 2005 Society of Plastics Engineers  相似文献   

16.
采用机械混炼法制备氢化丁腈橡胶/有机蒙脱土纳米复合材料,并对复合材料的微观结构及性能进行了研究。透射电镜和X衍射结果显示,制得一种剥离型纳米复合材料;与纯氢化丁腈硫化橡胶相比,氢化丁腈橡胶/有机蒙脱土纳米复合材料具有优良的力学性能,并且随蒙脱土含量的增加而提高;TGA结果显示,氢化丁腈橡胶/有机蒙脱土纳米复合材料的热稳定性能提高。  相似文献   

17.
The polymer, Hydrogenated Nitrile‐Butadiene Rubber (HNBR) was melt compounded with organophilic montmorillonite (OMMT). The dispersion of the OMMT in the HNBR matrix was characterized by X‐ray diffraction (XRD), which indicated that at the temperature of 100°C, the organoclay belong to the exfoliated and interlayer structure. The effect of sulfur on the dispersion of OMMT in the polymer matrix was also studied. The vulcanization changed the dispersion of OMMT in polymer matrix greatly and the basal spacing of clay layers is decreased after vulcanization. The mechanical properties, Akron abrasion and the crude oil medium aging‐resistant of HNBR nanocomposites were examined as a function of the OMMT content in the matrix of polymer. The results of the test show remarkable improvement in tensile strength, tear strength, aging‐resistant, and hardness of HNBR nanocomposites than that of unfilled HNBR. It is obvious that the 10 phr of OMMT filled nanocomposites have the best mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
采用机械混炼法制备了丁腈橡胶/氯丁橡胶/有机蒙脱土(NBR/CR/OMMT)纳米复合材料,并对其亚微观结构与性能进行了研究。透射电子显微镜(TEM)观察表明,OMMT以纳米尺寸分散于橡胶基体中,它与橡胶基体具有良好的相容性;OMMT能够明显提高纳米复合材料的表观交联密度;纳米复合材料具有优异的力学性能;与纯NBR/CR共混胶相比,纳米复合材料具有相同的起始分解温度和更高的最快失重温度。  相似文献   

19.
Polypropylene (PP)/polystyrene‐block‐poly(ethylene‐co‐butylenes)‐block‐polystyrene (SEBS)/organo‐montmorillonite (OMMT) nanocomposites of varying concentrations of maleic anhydride‐grafted polypropylene (PP‐g‐MA) were prepared by continuous mixing assisted by ultrasonic oscillation. The structure and morphology of nanocomposites were investigated by X‐ray diffraction (XRD), transmission electron microscopy, and scanning electron microscopy. It was found that both PP‐g‐MA and ultrasonic oscillation could enhance the intercalation and exfoliation of OMMT in PP matrix. Meanwhile, the formation of PP could be induced by ultrasonic irradiation at a power of more than 540 W. Rheological properties including complex viscosity, storage, and loss modulus of nanocomposites were increased after adding PP‐g‐MA or ultrasonic treatment. The results of mechanical properties showed that PP‐g‐MA could improve the tensile strength and tensile modulus of nanocomposites, but with the sacrifice of impact strength. This problem could be improved by ultrasound due to the reduced particle size of SEBS. However, the mechanical properties would be reduced by ultrasonic treatment with higher intensity due to the polymer degradation. Therefore, the synergistic effect of both compatibilizer and ultrasound should account for the balance between toughness and stiffness of PP/SEBS/OMMT ternary nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41202.  相似文献   

20.
梁玉蓉  谭英杰 《化工学报》2008,59(6):1571-1577
采用熔体插层法制备聚丙烯(PP)/有机黏土(OMMT)纳米复合材料。XRD和TEM的测试结果表明,采用熔体插层法制备的PP/OMMT复合材料是剥离型纳米复合材料。力学性能实验结果表明,相容剂的加入提高了PP与OMMT之间的相互作用,使其各项力学性能都得到了提高;PP/OMMT纳米复合材料的各项力学性能在有机黏土含量较小的情况下,就可以有较大幅度的提高;与纯PP相比,相容剂含量为10 phr、有机黏土用量为1 phr的聚丙烯基纳米复合材料具有最好的各项力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号