首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explicit expressions for two different cascade factorizations of any detectable left invertible nonminimum phase systems are given. The first one is a well known minimum phase/all-pass factorization by which all nonminimum phase zeros of a transfer function G(s) are collected into an all-pass factor V(s), and G (s) is written Gm(s)V$ where Gms is considered as a minimum phase image of G(s). The second one is a new cascade factorization by which G(s) is rewritten as GM( s)U(s) where U(s) collects all `awkward' zeros including all nonminimum phase zeros of G( s). Both Gm(s) and GM(s) retain the given infinite zero structure of G(s). Further properties of G m(s), GM(s), and U (s) are discussed. These factorizations are useful in several applications including loop transfer recovery  相似文献   

2.
Simple formulas are presented to compute the internally balanced minimal realization and the singular decomposition of the Hankel operator of a given continuous-time p×m stable transfer function matrix E(s)/d(s). The proposed formulas involve the Schwarz numbers of d(s) and the singular eigenvalues-eigenmatrices of a suitable finite matrix. Similar results are also obtained for a given discrete-time transfer function matrix  相似文献   

3.
The problem of absolute stability in a vibrational feedback controller is introduced and discussed. It is shown that for any rational G(s)=n(s)/d(s ) with d(s) Hurwitz and deg d(s) -deg n(s)=1 there exists a linear dynamic periodic controller that ensures, in a certain sense, the infinite sector of absolute stability. This implies that an additional dynamical element, inserted in the feedback loop, may lead to improvements in the robustness of nonlinear systems  相似文献   

4.
A network-theoretic approach to the design of a dynamic precompensator C(s) for a multiinput, multioutput plant T(s) is considered. The design is based on the relative degree of each element of T(s). Specifically, an efficient algorithm is presented for determining whether a given plant T(s) has a diagonal precompensator C( s) such that, for almost all cases, T(s)C (s) has a diagonal interactor. The algorithm also finds any optimal precompensator, in the sense that the total relative degree is minimal. The algorithm can be easily modified to work even when a T(s) represented by a nonsquare matrix is given  相似文献   

5.
6.
The commenter argues that the result of the above-titled work (see ibid., vol.37, no.10, p.1558-1561, Oct. 1992) is incorrect. It is pointed out that when sampling a continuous-time system G(s ) using zero-order hold, the zeros of the resulting discrete-time system H(z) become complicated functions of the sampling interval T. The system G(s) has unstable continuous-time zeros, s=0.1±i. The zeros of the corresponding sampled system start for small T from a double zero at z=1 as exp(T(0.1±i )), i.e., on the unstable side. For T>1.067 . . . the zeros become stable. The criterion function of the above-titled work, F(T)=G*(jωs/2)= H(-1)T/2, is, however, positive for all T, indicating only stable zeros. The zero-locus crosses the unit circle at complex values  相似文献   

7.
An algorithm intended for software implementation on a programmable systolic/wavefront computer is presented for the computation of a complex-valued frequency-response matrix G. Typically, real-valued state-space model matrices are given and the calculation of G must be performed for a very large number of values of the scalar frequency parameter. The algorithm is an orthogonal version of an algorithm described previously by A.J. Laub (ibid., vol.26, no.4, p.407-8, 1981). The system matrix A is reduced initially to an upper Hessenberg form which is preserved as the frequency varies subsequently. A systolic QR factorization of a certain complex-valued matrix is then implemented for effecting the necessary linear system solution (inversion). The critical computational component is the back solve. This computational component's process dependency graph is embedded optimally in space and time through the use of a nonlinear spacetime transformation. The computational period of the algorithm is O(n) where n is the order of the matrix A  相似文献   

8.
A necessary and sufficient condition is presented for the solution of the row-by-row decoupling problem (known as Morgan's problem) in the general case, that is, without any restrictive assumption added to the system to the feedback law u=Fx+Gy (G may be noninvertible). This is a structural condition in terms of invariant lists of integers which are easily computable from a given state realization of the system. These integers are the infinite zero orders (Morse's list I4) and the essential orders of the system, which only depend on the input-output behavior, and Morse's list I2 of the system, which depends on the choice of a particular state realization  相似文献   

9.
Let φ(s,a)=φ0(s,a)+ a1φ1(s)+a2 φ2(s)+ . . .+akφ k(s)=φ0(s)-q(s, a) be a family of real polynomials in s, with coefficients that depend linearly on parameters ai which are confined in a k-dimensional hypercube Ωa . Let φ0(s) be stable of degree n and the φi(s) polynomials (i⩾1) of degree less than n. A Nyquist argument shows that the family φ(s) is stable if and only if the complex number φ0(jω) lies outside the set of complex points -q(jω,Ωa) for every real ω. In a previous paper (Automat. Contr. Conf., Atlanta, GA, 1988) the authors have shown that -q(jω,Ωa ), the so-called `-q locus', is a 2k convex parpolygon. The regularity of this figure simplifies the stability test. In the present paper they again exploit this shape and show that to test for stability only a finite number of frequency checks need to be done; this number is polynomial in k, 0(k3), and these critical frequencies correspond to the real nonnegative roots of some polynomials  相似文献   

10.
The author analyzes the computational complexity of an algorithm by F.D. Groutage et al. (ibid., vol.AC-32, no.7, p.635-7, July 1987) for performing the transformation of a continuous transfer function to a discrete equivalent by a bilinear transformation. Groutage et al. defend their method by noting that their technique is not limited to the bilinear transformation. Rather, it can be extended to any higher-order integration rule (Simpson, Runge-Kutta, etc.), or to any higher-order expansion of the ln function. In general, using the method, s can be any appropriate mapping function s=f (z)  相似文献   

11.
It is shown that an unstable nonminimal continuous (discrete) realization (A, B, C) can be transformed via a similarity transformation into a balanced one if and only if the product of the controllability, observability Gramians is similar to a real diagonal matrix Λ. If, in addition, the eigenvalues of A , say λ, satisfy the relation λij≠0(λiλj≠1) then the matrix Λ will always be positive semidefinite, and a balanced realization with its minimal part in the internally balanced form can always be obtained  相似文献   

12.
Out-of-roundness problem revisited   总被引:4,自引:0,他引:4  
The properties and computation of the minimum radial separation (MRS) standard for out-of-roundness are discussed. Another standard out-of-roundness measurement called the minimum area difference (MAD) center is introduced. Although the two centers have different characteristics, the approach to finding both centers shares many commonalities. An O(n log n+k) time algorithm which is used to compute the MRS center is presented. It also computes the MAD center of a simple polygon G, where n is the number of vertices of G, and k is the number of intersection points of the medial axis and the farthest-neighbor Voronoi diagram of G. The relationship between MRS and MAD is discussed  相似文献   

13.
Consider a set A={A1,A2 ,. . ., An} of records, where each record is identified by a unique key. The records are accessed based on a set of access probabilities S=[s1,s2 ,. . ., sN] and are to be arranged lexicographically using a binary search tree (BST). If S is known a priori, it is well known that an optimal BST may be constructed using A and S. The case when S is not known a priori is considered. A new restructuring heuristic is introduced that requires three extra integer memory locations per record. In this scheme, the restructuring is performed only if it decreases the weighted path length (WPL) of the overall resultant tree. An optimized version of the latter method, which requires only one extra integer field per record has, is presented. Initial simulation results comparing this algorithm with various other static and dynamic schemes indicates that this scheme asymptotically produces trees which are an order of magnitude closer to the optimal one than those produced by many of the other BST schemes reported in the literature  相似文献   

14.
Let a family of polynomials be P(s)=t 0sn+t1s n±1 + . . . + tn where 0<ajtjb j. V.L. Kharitonov (1978) derived a necessary and sufficient condition for the above equation to have only zeros in the open left-half plane. The present authors derive some similar results for the equation to be strictly aperiodic (distinct real roots)  相似文献   

15.
A necessary and sufficient condition for a prefix-closed language K⊆Σ* to be controllable with respect to another prefix-closed language L⊆Σ* is that KL. A weaker notion of controllability where it is not required that KL is considered here. If L is the prefix-closed language generated by a plant automaton G, then essentially there exists a supervisor Θ that is complete with respect to G such that L(Θ|G)=KL if and only if K is weakly controllable with respect to L. For an arbitrary modeling formalism it is shown that the inclusion problem is reducible to the problem of deciding the weaker notion of controllability. Therefore, removing the requirement that KL from the original definition of controllability does not help the situation from a decidability viewpoint. This observation is then used to identify modeling formalisms that are not viable for supervisory control of the untimed behaviors of discrete-event dynamic systems  相似文献   

16.
A frame approach to the H superoptimal solution which offers computational improvements over existing algorithms is given. The approach is based on interpreting s numbers as the largest gains between appropriately defined spaces. Some useful bounds on Hankel singular values and s numbers are derived  相似文献   

17.
The problem of tightly bounding and shaping the frequency responses of two objective functions Ti(s)( i=1,2) associated with a closed-loop system is considered. It is proposed that an effective way of doing this is to minimize (or bound) the function max {∥T1(s)∥ , ∥T2(s)∥} subject to internal stability of the closed-loop system. The problem is formulated as an H control problem, and an iterative solution is given  相似文献   

18.
The continuous-time stationary linear-quadratic-Gaussian (LQG) optimal regulation problem is considered where the measurements are free of white noise components. A simple direct solution in the s-domain is derived for the optimal controller for general linear, time-variant right-invertible or left-invertible systems. The explicit expressions that are found for the controller transference and for the regulator return-ratio matrix can be used to obtain a practical suboptimal design in the s-domain. These expressions are applied to derive simple conditions for the precise recovery of the return-ratio matrix of the LQG regulator  相似文献   

19.
An efficient method to compute the terminal reliability (the probability of communication between a pair of nodes) of a distributed computing system (DCS) is presented. It is assumed that the graph model G(V,E) for DCS is given and that the path and/or cut information for the network G(V,E) is available. Boolean algebraic concepts are used to define four operators: compare, reduce, combine, and generate. The proposed method, called CAREL, uses the four operators to generate exclusive and mutually disjoint events. CAREL has been implemented using bit vector representation on an Encore MULTIMAX 320 system. It is shown that CAREL solves large DCS networks (having a pathset on the order of 780 and a cutset on the order of 7300 or more) with a reasonable memory requirement. A comparison with other algorithms reveals the computational efficiency of the method. The proof of correctness of CAREL is included  相似文献   

20.
Periodic output feedback is investigated in the context of linear-quadratic regulation for finite-dimensional time-invariant linear systems. Discrete output samples are multiplied by a periodic gain function to generate a continuous feedback control. The optimal solution is obtained in two steps by separating the continuous-time from the discrete-time structure. First, the optimal pole placement problem under periodic output feedback is solved explicitly under the assumption that the behavior at the sample times has been specified in terms of a gain matrix G. Then the minimum value, which depends on G, is substituted into the overall objective. This results in a finite-dimensional nonlinear programming problem over all admissible gain matrices G. The solution defines the optimal periodic output feedback control via the formulas of the optimal pole placement problem. A steepest descent and a direct iterative method for solving this problem are formulated and compared. Numerical examples show that the performance using periodic output feedback is almost equivalent to that using optimal continuous-state feedback  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号