首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to develop the thermodynamic database of phase equilibria in the Mg–Zn–Re (Re: rare earth element) base alloys, the thermodynamic assessments of the Ce–Zn and Pr–Zn systems were carried out by using the calculation of phase diagrams (CALPHAD) method on the basis of the experimental data including thermodynamic properties and phase equilibria. Based on the available experimental data, Gibbs free energies of the solution phases (liquid, bcc, fcc, hcp and dhcp) were modeled by the subregular solution model with the Redlich–Kister formula, and those of the intermetallic compounds were described by the sublattice model. A consistent set of thermodynamic parameters has been derived for describing the Gibbs free energies of each solution phase and intermetallic compound in the Ce–Zn and Pr–Zn binary systems. An agreement between the present calculated results and experimental data is obtained.  相似文献   

2.
Thermodynamic analysis of three binary Ti-based alloys: Ti–Al, Ti–V, and Al–V, as well as ternary alloy Ti–Al–V, is shown in this paper. Thermodynamic analysis involved thermodynamic determination of activities, coefficient of activities, partial and integral values for enthalpies and Gibbs energies of mixing and excess energies at four different temperatures: 2000, 2073, 2200 and 2273 K, as well as calculated phase diagrams for the investigated binary and ternary systems. The FactSage is used for all thermodynamic calculations.  相似文献   

3.
The molecular interaction volume model (MIVM) is used to predict the formation enthalpies of Bi–Cd–Ga–In–Sn–Zn and Bi–Cd–Ga–In–Pb–Sn–Zn liquid alloys, using only the infinitely dilute enthalpies of binary systems and the coordination numbers of the constituent elements in liquid alloys. In addition, the infinitely dilute enthalpies of binary system were obtained by Miedema's theory without requiring experimental data. The results are compared with the experimental data and calculated values using the Hoch–Arpshofen model (HAM), the results indicate that the model is reliable as well as being convenient.  相似文献   

4.
As an extension to previous work on Al-rare earth metal binary alloys [Scripta Mater. 50 (2004) 987], the glass forming ranges (GFR) of Al–Gd–Ni (Fe) are analyzed and compared with those experimentally determined for the quenched alloys. The multicomponent effects on the GFRs are illustrated from a thermodynamic perspective.  相似文献   

5.
The thermodynamic assessments of the Cu–Th and Mo–Th binary systems were carried out by using Calculation of Phase Diagrams (CALPHAD) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, and fcc phases are described by the subregular solution model with the Redlich–Kister equation and those of the four intermetallic compounds Cu6Th, Cu3.6Th, Cu2Th and CuTh2 in the Cu–Th binary system were described by the sublattice model. A set of self-consistent thermodynamic parameters are obtained, and the calculated phase diagrams and thermodynamic properties are presented and compared with the experimental data from literatures. The calculated thermodynamic properties as well as phase diagrams are in good agreement with the experimental data.  相似文献   

6.
G. Shao   《Intermetallics》2001,9(12):1063-1068
The Re–Si system is assessed thermodynamically, using the CALPHAD method. The calculated phase diagram and thermodynamic properties are in good agreement with available experimental data. Calculated enthalpies and entropies of fusion are compared with available data for other transition metal silicides, against melting points, showing good agreement with the general trends. This is a useful approach for thermodynamic assessment of alloy systems, where experimentally measured thermodynamic data are limited. The stability of the amorphous phase in this system has also been discussed.  相似文献   

7.
8.
THERMODYNAMICALCALCULATIONOFFORMATIONENTHALPIESFORALKALINEMETALALLOYSOuyang;YifangZhang;BangweiLiao;Shuzhi(InternationalCentr...  相似文献   

9.
10.
Mg–7 mass%Gd–x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg–7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg–7Gd–5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 °C, respectively, which is about 1.8 times as high as the Mg–7Gd binary alloy. When x is more than 3, the amount of Mg5(Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the β-Mg5(Gd,Y) precipitate.  相似文献   

11.
The vaporisation of Fe–Al and Ni–Al alloys has been investigated in the temperature range 1140–1600 K and 1178 to 1574 K, respectively, by Knudsen effusion mass spectrometry (KEMS). Eleven different Fe–Al and also eleven Ni–Al compositions have been investigated in the composition ranges 30–51 at.% Al and 38–53 at.% Al, respectively. The Fe–Al samples have been investigated mostly in the B2 region of the phase diagram. The partial pressures and thermodynamic activities were evaluated directly from the measured ion intensities formed from the equilibrium vapour over the alloy and the pure element. From the temperature dependence of the activities the partial and integral molar enthalpies and entropies of mixing have been obtained. These are the most accurate data obtained by mass spectrometry on Fe–Al and Ni–Al systems so far. Nearly temperature independent integral enthalpies and entropies of mixing over the wide temperature range investigated were found, with the mixing entropies being large and negative.  相似文献   

12.
The wetting phenomena of molten alloy/ceramic substrate depend on the bonding characteristics of liquid alloys and ceramics as well as on the magnitude of interactive forces at the interface. According to this, the first step of this investigation is to determine the surface properties of Ag–Cu, Ag–Ti and Cu–Ti liquid alloys. The energetics of mixing in liquid alloys has been analysed through the study of surface properties (surface tension and surface composition) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the frame of statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). The results obtained for these binary systems have been extended to the ternary Ag–Cu–Ti system. Combining the Young and the Dupré equations, the computed results of surface tension together with contact angle data have been used to calculate the work of adhesion and, in the case of non-reactive wetting, the interfacial tension between the solid substrate and the liquid alloys over the whole concentration range. The evaluation of the interfacial tension values is determined from calculated and measured data using solid surface tension data from literature. These results provide more information on the characteristics of metal–ceramic systems, and are therefore useful in guiding experiments, or in predicting the surface properties of metallic systems with similar characteristics as well as their wetting behaviour in contact with ceramic materials.  相似文献   

13.
The microstructure and mechanical properties of a precipitation hardenable Al–Mg–Si alloy subjected to cryorolling (CR), short annealing and ageing treatments are reported in this present work. The pre-cryorolled solid solution treatment combined with post-CR short annealing (155 °C for 5 min) and then ageing treatment (125 °C for 12 h) has been found to be the optimum processing condition to obtain the ultrafine grained microstructure with substantial improvement of tensile strength (286 MPa) and good tensile ductility (14%) in the Al–Mg–Si alloy. The significant improvement of the mechanical properties of the cryorolled and peak aged 6063 Al alloys have been observed as compared to its bulk alloys in the peak-aged condition (T6).  相似文献   

14.
Thermodynamic modelling of the Pb–Ca–Sn ternary system was carried out with the help of the CALculation of PHase Diagrams (CALPHAD) method.The binary borders related to the ternary system were investigated. The lead–tin system is already calculated, the calcium–tin and calcium–lead systems can be described with the association model in binary liquid. The establishment of the modelling of the Pb–Ca–Sn phase diagram was done after collecting own experimental information. The introduction of new interaction parameters related to the ternary liquid, leads to an accurate restoration of the experimental data.Calculated isothermal, isoplethal sections and liquidus surfaces are presented. They confirm that the calcium solubility in lead matrix drastically decreases with the introduction of tin as well as with the decreasing of temperature. The industrial process applied to the lead–calcium–tin alloys finds some justifications in the calculated phase diagram.  相似文献   

15.
16.
17.
Al–Ti–B refiners with excess-Ti (Ti:B > 2.2) perform adequately for wrought aluminium alloys but they are not as efficient in the case of foundry alloys. Silicon, which is abundant in the latter, forms silicides with Ti and severely impairs the potency of TiB2 and Al3Ti particles. Hence, Al–Ti–B alloys with excess-B (Ti:B < 2.2) and binary Al–B alloys are favored to grain refine hypoeutectic Al–Si alloys. These grain refiners rely on the insoluble (Al,Ti)B2 or AlB2 particles for grain refinement, and thus do not enjoy the growth restriction provided by solute Ti. It would be very attractive to produce excess-B Al–Ti–B alloys which additionally contain Al3Ti particles to maximize their grain refining efficiency for aluminium foundry alloys. A powder metallurgy process was employed to produce an experimental Al–3Ti–3B grain refiner which contains both the insoluble AlB2 and the soluble Al3Ti particles. Inoculation of a hypoeutectic Al–Si foundry alloy with this grain refiner has produced a fine equiaxed grain structure across the entire section of the test sample which was more or less retained for holding times up to 15 min.  相似文献   

18.
19.
Ti–V–Mn based hydrides are one family of alloys with improved hydrogenation properties and they have a great potential to replace the AB5 alloys as the sorption materials in hydrogen compression systems, although there still are many problems associated with their use, including unstable reversible hydrogen capacity and unfavorable thermodynamic properties. To gain a better understanding on the effect of the substitution elements and to optimize the alloy composition for high storage capacity, the influence of the alloy stoichiometry was investigated. Ti–Zr–V–Mn alloys were prepared by arc melting technique and were annealed in vacuum at temperature above 900 °C to obtain great sorption properties. Hydrogen absorption and desorption kinetics and PCT characteristics of these alloys at ambient temperature were measured and compared. These hydrogen storage features were also discussed in relation to the effect of alloy element compositions. Ti–Zr–V–Mn alloy cycling behavior was also examined.  相似文献   

20.
Recently developed Mg–Mn–Sc alloys show a considerable increase of creep resistance at elevated temperature. The endeavor to further improve the properties and to reduce cost of high-price Sc metal initiated a search for additional alloying elements. Gd, Y and Zr were considered for this purpose. The aim is to achieve a large quantity of suitable precipitations to improve mechanical properties using a minimum of expensive alloy element addition. The huge amount of possibilities of combining the elements Mg–Mn–(Sc, Gd, Y, Zr) and the time and cost effort of technological experiments require a preselecting of systems and alloy compositions. Thermodynamic phase diagram and phase amount calculations were performed to give hints for selecting promising candidates. A priority list of three quaternary systems is established: Mg–Mn–Gd–Sc, Mg–Mn–Sc–Y and Mg–Mn–Y–Zr, based on the classification of individual alloys. Most promising is MgMn1Gd5Sc0.8 (wt.%), but the alloys MgMn1Gd5Sc0.3 and MgMn1Y5Sc0.8 are also promising. The entire quaternary Mg–Mn–Y–Zr system is disqualified because of phase diagram features that are detrimental for the required microstructural engineering. The focused alloy development following this approach avoids a waste of time and effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号