首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vapor pressures of CdI2 and Cs2CdI4 were measured below and above their melting points, employing the transpiration technique. The standard Gibbs energy of formation ΔfG° of Cs2CdI4, derived from the partial pressure of CdI2 in the vapor phase above and below the melting point of the compound could be represented by the equations ΔfG°Cs2CdI4 (±6.7) kJ mol−1=−1026.9+0.270 T (643 K≤T≤693 K) and ΔfG°{Cs2CdI4} (±6.6) kJ mol−1=−1001.8+0.233 T (713 K≤T≤749 K) respectively. The enthalpy of fusion of the title compound derived from these equations was found to be 25.1±10.0 kJ mol−1 compared to 36.7 kJ mol−1 reported in the literature from differential scanning calorimetry (DSC). The standard enthalpy of formation ΔfH°298.15 for Cs2CdI4 evaluated from these measurements was found to be −918.0±11.7 kJ mol−1, in good agreement with the values −920.3±1.4 and −917.7±1.5 kJ mol−1 reported in the literature from two independent calorimetric studies.  相似文献   

2.
The emf of the galvanic cells Pt, Mo, MoO2¦8 YSZ¦‘FeO’, Fe, Pt (I) and Pt, Fe,‘FeO’ ¦8 YSZ¦MoO2, Mo3Te4, MoTe2(), C, Pt (II) were measured over the temperature ranges 837 to 1151 K and 775 to 1196 K, respectively, using 8 mass% yttria-stabilized zirconia (8 YSZ) as the solid electrolyte. From the emf values, the partial molar Gibbs energy of solution of molybdenum in Mo3Te4/MoTe2(), was found to be . Using the literature data for the Gibbs energy of formation of MoTe2(). the expression ΔG°f(Mo3Te4,s) ± 5.97 (kj/mol) = −253.58 + 0.09214T(K) was derived for the range 775 to 1196 K. A third-law analysis yielded a value of −209 ± 10 kJ/mol for ΔH°f.298o of Mo3Te4(s).  相似文献   

3.
Short range order structure of Pb83Mg17 and Pb83Li17 liquid alloys has been studied by means of X-ray diffraction method. The structure factors and pair correlation functions are analyzed. Experimental structure data were used to calculate the partial structure characteristics by means of Reverse Monte Carlo method. It is shown also that Li4Pb significantly affects the structure of Pb83Li17 eutectic melt. For Pb83Mg17 eutectic melt the electrical resistivity and thermo-e.m.f. were measured in the temperature range of 550-1300 K. Their analysis confirms the diffraction data concluding the heterocoordinated atomic distribution Pb and Mg atoms.  相似文献   

4.
The results of present paper have shown that sputtering of yttrium iron garnet (Y3Fe5O12) under swift heavy ions in the electronic energy loss regime is non-stoichiometric. Here we are presenting additional experimental results for gadolinium gallium garnet (Gd3Ga5O12) as target. The irradiations were performed with different ions (50Cr (589 MeV), 86Kr (195 MeV) and 181Ta (400 MeV)) impinging perpendicularly to the surface. As earlier, the sputtering yield was determined by collecting the emitted gadolinium and gallium atoms on a thin aluminium foil, placed upstream above the target and analyzing the Al catcher by Rutherford backscattering. Also for Gd3Ga5O12, the emission of Gd and Ga is non-stoichiometric. Sputtering appears above a critical electronic stopping power of Sth = 11.6 ± 1.5 keV/nm, which is larger than the threshold for track formation, in agreement with other amorphisable materials. In addition, the angular distribution of the sputtered species was measured for Y3Fe5O12 and Gd3Ga5O12 using 200 MeV Au ions impinging the surface at 20° relatively to the surface. For the two garnets the ratio of Y/Fe (and Gd/Ga) varies with the angle of emitted species and the stoichiometry seems to be preserved only for an emission perpendicular to the surface.  相似文献   

5.
The thermodynamic stability of rubidium thorate, Rb2ThO3(s), was determined from vaporization studies using the Knudsen effusion forward collection technique. Rb2ThO3(s) vaporized incongruently and predominantly as Rb2ThO3(s)=ThO2(s) + 2Rb(g) + 1/2 O2(g). The equilibrium constant K=pRb2·pO21/2 was evaluated from the measurement of the effusive flux due to Rb vapor species under the oxygen potential governed by the stoichiometric loss of the chemical component Rb2O from the thorate phase. The Gibbs energy of formation of Rb2ThO3 derived from the measurement and other auxiliary data could be given by the equation, ΔfG°(Rb2ThO3,s)=−1794.7+0.42T ± .  相似文献   

6.
7.
Exposure tests of an oxide dispersion strengthened martensitic type steel (ODS) were performed in stagnant lead bismuth eutectic (LBE) containing 10−4, 10−6 and 10−8 wt% of oxygen at 500-650 °C up to 10 000 h. It resulted that the base metal was protected from corrosion by the formation of a magnetite and spinel layer in liquid Pb45Bi55 containing 10−6 wt% of oxygen at 550 °C or less, not however, at higher temperatures. At 650 °C and 10−8 wt% of oxygen, the ODS steel showed good compatibility with LBE by formation of a thin mixed high chromium spinel layer, while at 10−4 wt% multilayers of magnetite and spinel develop at this temperature which break off but are renewed by oxide layers which protect the steel again.  相似文献   

8.
Because of the high neutron capture cross section for five consecutive europium isotopes, Eu2O3 is of interest as a control material for nuclear reactors. A tendency toward excessive grain growth degrades its mechanical properties. Small amounts of HfO2 and Ta2O5 were added to the Eu2O3 in attempts to suppress this grain growth. Three at % substitution of Hf for  相似文献   

9.
The oxygen potentials over the phase field: Cs4U5O17(s)+Cs2U2O7(s)+Cs2U4O12(s) was determined by measuring the emf values between 1048 and 1206 K using a solid oxide electrolyte galvanic cell. The oxygen potential existing over the phase field for a given temperature can be represented by: Δμ(O2) (kJ/mol) (±0.5)=−272.0+0.207T (K). The differential thermal analysis showed that Cs4U5O17(s) is stable in air up to 1273 K. The molar Gibbs energy formation of Cs4U5O17(s) was calculated from the above oxygen potentials and can be given by, ΔfG0 (kJ/mol)±6=−7729+1.681T (K). The enthalpy measurements on Cs4U5O17(s) and Cs2U2O7(s) were carried out from 368.3 to 905 K and 430 to 852 K respectively, using a high temperature Calvet calorimeter. The enthalpy increments, (H0TH0298), in J/mol for Cs4U5O17(s) and Cs2U2O7(s) can be represented by, H0TH0298.15 (Cs4U5O17) kJ/mol±0.9=−188.221+0.518T (K)+0.433×10−3T2 (K)−2.052×10−5T3 (K) (368 to 905 K) and H0TH0298.15 (Cs2U2O7) kJ/mol±0.5=−164.210+0.390T (K)+0.104×10−4T2 (K)+0.140×105(1/T (K)) (411 to 860 K). The thermal properties of Cs4U5O17(s) and Cs2U2O7(s) were derived from the experimental values. The enthalpy of formation of (Cs4U5O17, s) at 298.15 K was calculated by the second law method and is: ΔfH0298.15=−7645.0±4.2 kJ/mol.  相似文献   

10.
Swift gold ions (185 MeV) were used to systematically investigate the radiation damage response of delta phase compounds Sc4Zr3O12 and Lu4Zr3O12 in the electronic energy loss regime. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD investigations indicate a phase transformation from ordered rhombohedral to disordered fluorite (O-D) in both compounds, with the Sc compound transforming at a higher ion fluence compared with the Lu compound. This result is consistent with our previous study on Sc4Zr3O12 and Lu4Zr3O12 under displacive radiation environment in which the nuclear energy loss is dominant. High resolution TEM revealed that individual ion tracks maintain crystalline structure, while the core region experiences an O-D phase transformation. TEM observations also suggest that for the doses in which the tracks overlap, the O-D phase transformation occurs across the entire ion range.  相似文献   

11.
The EMF of the following galvanic cells,
(render)
Kanthal,Re,Pb,PbOCSZO2 (1 atm.),Pt
(render)
Kanthal,Re,Pb,PbOCSZO2(1 atm.),RuO2,Pt
were measured as a function of temperature. With O2 (1 atm.), RuO2 as the reference electrode, measurements were possible at low temperatures close to the melting point of Pb. Standard Gibbs energy of formation, ΔfG0mβ-PbO was calculated from the emf measurements made over a wide range of temperature (612–1111 K) and is given by the expression: ΔfG0mβ-PbO±0.10 kJ=−218.98+0.09963T. A third law treatment of the data yielded a value of −218.08 ± 0.07 kJ mol−1 for the enthalpy of formation of PbO(s) at 298.15 K, ΔfH0mβ-PbO which is in excellent agreement with second law estimate of −218.07 ± 0.07 kJ mol−1.  相似文献   

12.
The creep of UO2 containing small additions of Nb2O5 has been investigated in the stress range 0.5–90 MN/m2 at temperatures between 1422 and 1573 K. The functional dependence of the creep rate of five dopant concentrations up to 0.8 mol% Nb2O5 has been examined and it was established that in all the materials the secondary creep rate could be represented by the equation /.εkT = nexp(?Q/RT), where /.ε is the steady state creep rate per hour, Q the activation energy and A and n are constants for each material. It was observed that Nb2O5 additions can cause a dramatic increase in the steady state creep rate as long as the niobium ion is maintained in the Nb5+ valence state. Material containing 0.4 mol% Nb2O5 creeps three orders of magnitude faster than the pure material.Analysis of the results in terms of grain size compensated viscosity suggest that, like “pure” UO2, the creep rate of Nb2O5 doped fuel is diffusion-controlled and proportional to the reciprocal square of the grain size. A model is developed which suggests that the increase in creep rate results from suppression of the U5+ ion concentration by the addition of Mb5+ ions, which modifies the crystal defect structure and hence the uranium ion diffusion coefficient.  相似文献   

13.
TiO2/V2O5 based ceramic materials applied in catalysis were investigated. Structural properties like the grain diameter of these pressed ceramic powders were analysed by means of Rutherford backscattering (RBS) making use of an analytic model to describe the energy spectra of porous rough samples. Grain diameters of these samples were deduced as function of process temperature and chemical composition and related to a phase transition from the TiO2-Anatase/V2O5-Shcherbinaite to Rutile solid solution (Rutile-ss) structure. RBS data were compared to results of scanning electron microscopy (SEM). The activation energy for the sintering at the phase transition was estimated to 5.4 eV.  相似文献   

14.
15.
In this work, we present a detailed kinetic study of the thermoluminescence of Bi4Ge3O12 (BGO) single crystals grown by the Czochralski technique. A single crystalline phase was confirmed through X-ray diffraction pattern analysis based on the Rietveld profile refinement method. The thermoluminescent (TL) glow curves were induced by UV or beta radiation and measured between 20 °C and 200 °C. The glow curves of BGO crystal presented two peaks at 61 °C and 90 °C for both kinds of radiation. The kinetic parameters, kinetic order (b), activation energy (E) and frequency factor (s), of the TL glow curves have been determined by four different methods. The lifetime of the peaks at room temperature was also determined and used to discuss the stability of the TL peaks at room temperature.  相似文献   

16.
The incorporation of gadolinium directly into nuclear fuel is important regarding reactivity compensation, which enables longer fuel cycles. The incorporation of Gd2O3 powder directly into the UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinder the densification process. Minimal information exists regarding the possible mechanisms for this blockage and this is restricted to the hypothesis based on the formation of a low diffusivity Gd rich (U,Gd)O2 phase. The objective of this investigation was to study the phase formation in this system, thus contributing to clarifying the causes of the blockage. Experimental evidence indicated the existence of phases in the (U,Gd)O2 system that revealed structures different from the fluorite-type UO2 structure. These phases appear to be isostructural to the phases observed in the rare earth-oxygen system.  相似文献   

17.
Enthalpy increment measurements on La2Te3O9(s) and La2Te4O11(s) were carried out using a Calvet micro-calorimeter. The enthalpy values were analyzed using the non-linear curve fitting method. The dependence of enthalpy increments with temperature was given as: (T) − (298.15 K) (J mol−1) = 360.70T + 0.00409T2 + 133.568 × 105/T − 149 923 (373 ? T (K) ? 936) for La2Te3O9 and (T) − (298.15 K) (J mol−1) = 331.927T + 0.0549T2 + 29.3623 × 105/T − 114 587 (373 ? T (K) ? 936) for La2Te4O11.  相似文献   

18.
19.
Phase-relation studies of the UO2-FeO1+x system in an inert atmosphere are presented. The eutectic point has been determined, which corresponds to a temperature of (1335 ± 5) °C and a UO2 concentration of (4.0 ± 0.1) mol.%. The maximum solubility of FeO in UO2 at the eutectic temperature has been estimated as (17.0 ± 1.0) mol.%. Liquidus temperatures for a wide concentration range have been determined and a phase diagram of the system has been constructed.  相似文献   

20.
It is now well known that irradiation of metals and alloys can drive materials into complex configurations. Several examples, like the occurrence of order–disorder phase transitions driven by irradiation, are discussed by many authors. To understand the behavior of ceramics under irradiation, several spinels were irradiated. In this paper, experimental results on the irradiation of ZnAl2O4 by low-energy particles (4 MeV Au2+ ions) are presented. An order–disorder phase transition is observed. The unusual behavior of this spinel under irradiation is discussed within the framework of Martin’s theory of driven alloys under irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号