首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of burn-up on the thermal conductivity of homogeneous SBR MOX fuel is investigated and compared with standard UO2 LWR fuel. New thermal diffusivity results obtained on SBR MOX fuel with a pellet burn-up of 35 MWd/kgHM are reported. The thermal diffusivity measurements were carried out at three radial positions using a shielded “laser-flash” device and show that the thermal diffusivity increases from the pellet periphery to the centre. The fuel thermal conductivity was found to be in the same range as for UO2 of similar burn-up. The annealing behaviour was characterized in order to identify the degradation due to the out-of-pile auto-irradiation.  相似文献   

2.
A study of the thermal conductivity of a commercial PWR fuel with an average pellet burn-up of 102 MWd/kgHM is described. The thermal conductivity data reported were derived from the thermal diffusivity measured by the laser flash method. The factors determining the fuel thermal conductivity at high burn-up were elucidated by investigating the recovery that occurred during thermal annealing. It was found that the thermal conductivity in the outer region of the fuel was much higher than it would have been if the high burn-up structure were not present. The increase in thermal conductivity is a consequence of the removal of fission products and radiation defects from the fuel lattice during recrystallisation of the fuel grains (an integral part of the formation process of the high burn-up structure). The gas porosity in the high burn-up structure lowers the increase in thermal conductivity caused by recrystallisation.  相似文献   

3.
The TRISO particle design of high temperature reactors fueled with plutonium (Pu) and/or minor actinides (MAs) is investigated by calculating the failure fraction of TRISO particles during irradiation. For this purpose, a fuel depletion, neutronics and thermal-hydraulics code system, which delivers the fuel temperature, fast neutron flux and power density profiles, is coupled to an analytical stress analysis code. The latter is being further developed for the calculation of a reliable and realistic failure fraction. The code system has been applied to a PBMR-400 design containing TRISO particles fueled with 1st and 2nd generation plutonium and with a target burn-up of 700 and 600 MWd/kgHM, respectively. It is shown that the pebble-bed type high temperature reactor under consideration is a promising option for burning Pu and MAs if very high burn-ups can be achieved. The TRISO particle failure fraction is also calculated for both Pu and MA fuels, and compared to U-based fuel. It is shown by the present stress analysis code that the Pu-based fuel particles need a better design and this has been achieved for the MA-based fuel, in which helium gas atoms have a significant contribution to the buffer pressure.  相似文献   

4.
A commercial PWR fuel sample with a local burn-up of about 240 MWd/kgHM was annealed in a Knudsen cell mass spectrometer system with a heating rate of 10 K/min up to 2750 K at which temperature the sample was completely vaporized. The release of fission gases and fission products was studied as a function of temperature. In one of the runs the heating was interrupted successively at 900, 1500 and 1860 K and at each step a small fragment of the sample was examined by SEM and analysed by energy dispersive electron probe microanalysis. The release behaviour of volatile, gaseous and other less volatile fission products is presented and analysed with the EFFUS program and related to the structural changes of the fuel.  相似文献   

5.
A comprehensive model GRSW-A was developed to analyse the processes of fission gas release, gaseous swelling and microstructural evolutions in the uranium dioxide fuel during base irradiation and under transient conditions. The GRSW-A analysis incorporates a number of models published in open literature, as well as some original models that were already published by the authors elsewhere. Consequently, only the most prominent aspects of GRSW-A and its coupling with the FALCON fuel behaviour analysis and licensing code are described in this paper. The analysis of fuel behaviour in the REGATE experiment is presented, which includes the base irradiation of the fuel segment in a PWR to a burn-up of about 50 MWd/kgU, which was followed by a power ramp in the SILOE research reactor. Besides, the generalized data on fission gas release (FGR) in PWR fuel during the base irradiation up to a burn-up of about 70 MWd/kgU is interpreted using coupled FALCON and GRSW-A. Moreover, a mechanistic interpretation of the published data for pellet swelling during the base irradiation up to a burn-up of 100 MWd/kgU is put forward. In all the cases, the coupled FALCON/GRSW-A analysis has shown the improved prediction capability compared to the original FALCON MOD01, which is achieved due to the account for the mutual effect of thermal and, in particular, high-burn-up-assisted mechanisms of fission gas release and swelling under steady-state and transient conditions.  相似文献   

6.
New thermal diffusivity data for homogeneous SBR and heterogeneous MIMAS and OCOM MOX fuels are reported. No significant difference between the thermal diffusivity of the homogeneous and heterogeneous fuels was found at the burn-up up to 44 MWd/kgHM. These measurements, combined with previously published results or correlation functions for irradiated UO2 and MOX were compared and it was found that separate correlations for these two fuels are not justified. A correlation for the thermal conductivity of irradiated UO2 and MOX as a function of burn-up and irradiation temperature is proposed.  相似文献   

7.
Post-irradiation examinations (PIEs) of spent BWR-MOX and PWR-UO2 fuel rods irradiated in commercial LWRs and stored for 20 years were carried out to evaluate fuel integrity during storage. Average burn-up of five fuel rods of the BWR-MOX fuel was about 20 MWd/kgHM and that of the PWR-UO2 fuel was 58 MWd/kgHM. The PIE items included: (a) visual inspection of the cladding surface, (b) puncture test, (c) ceramographic observation on the pellet and cladding, (d) pellet density, (e) electron probe microanalysis of the pellet, (f) cladding tensile test, (g) hydrogen content and hydride orientation in the cladding, and (h) hydrogen redistribution in the cladding under temperature gradient. The PIE results showed no marked difference in the visual inspection, fission gas release, oxide layer thickness, pellet microstructure, and cladding mechanical properties or hydride orientation after storage. The result of the hydrogen redistribution experiment showed that hydrogen migration had little effect on the fuel integrity during dry storage. Hydrogen migration on the fuel rod for 40 years of storage was evaluated using the heat of transport obtained in the hydrogen redistribution experiment and calculated result showed that hydrogen migration had little effect on the fuel integrity during dry storage.  相似文献   

8.
Plutonium concentrations and burnup at Pu spots were calculated in U-Pu mixed oxide (MOX) fuel pellets for light water reactors with the neutron transport and burnup calculation code VIMBURN. The calculation models were suggested for Pu spots and U matrices in a heterogeneous MOX fuel pellet. The calculated Pu concentrations and burnup at Pu spots were compared with the PIEs data in a MOX pellet (38.8 MWd/kgHM). The calculated Pu concentrations agreed by 5–18% with the measured ones, and the calculated burnup did by less than 10% with the estimated one with the measured Nd concentrations. Commercial PWR types of MOX fuels were also analyzed with the calculation code and the models. Burnup at Pu spot increased as the distance was greater from the radial center of a MOX fuel pellet. Burnup at Pu spots in the peripheral region became 3–5 times higher than pellet average burnup of 40 MWd/kgHM. The diameters (20–100 μm) of Pu spots were not found a significant factor for burnup at Pu spots. In the outer half volume region (outer than r/r o=0.7) of a MOX fuel pellet, burnup at Pu spots exceeded 70MWd/kgHM (the threshold burnup of microstructure change in UO2 fuel pellet) at pellet average burnup of 1430 MWd/kgHM.  相似文献   

9.
A two-step two-stage model is developed in this study on the basis of the recent theoretical model. This model incorporates a two-step burn-up factor in the two-stage diffusion processes in the grain lattice and at the grain boundary during the fission gas release. In-pile data sets available in FRAPCON-3 code are used to validate the model. Results show that the predictions are in better agreement with the experimental measurements than those of any other models built in the code over the entire burn-up range up to 75 000 MWd/MTU.  相似文献   

10.
A fuel burn-up model in a reduced reactor geometry (2-D) is successfully developed and implemented in the Batan in-core fuel management code, Batan-FUEL. Considering the bank mode operation of the control rods, several interpolation functions are investigated which best approximate the 3-D fuel assembly radial power distributions across the core as function of insertion depth of the control rods. Concerning the applicability of the interpolation functions, it can be concluded that the optimal coefficients of the interpolation functions are not very sensitive to the core configuration and core or fuel composition in RSG GAS (MPR-30) reactor. Consequently, once the optimal interpolation function and its coefficients are derived then they can be used for 2-D routine operational in-core fuel management without repeating the expensive 3-D neutron diffusion calculations. At the selected fuel elements (at H-9 and G-6 core grid positions), the discrepancy of the FECFs (fuel element channel power peaking factors) between the 2-D and 3-D models are within the range of 3.637 × 10−4, 3.241 × 10−4 and 7.556 × 10−4 for the oxide, silicide cores with 250 g 235U/FE and the silicide core with 300 g 235U/FE, respectively.  相似文献   

11.
Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the “rim effect.” High burn-up phenomena in WWER-440 UO2 fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity.In this paper, the radial burn-up and fissile products distributions of WWER-440 UO2 fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented.  相似文献   

12.
Attainable discharge burnups for oxide and hydride fuels in PWR cores were investigated using the TRANSURANUS fuel performance code. Allowable average linear heat rates and coolant mass fluxes for a set of fuel designs with different fuel rod diameters and pitch-to-diameter ratios were obtained by VIPRE and adopted in the fuel code as boundary conditions. TRANSURANUS yielded the maximum rod discharge burnups of the several design combinations, under the condition that specific thermal-mechanical fuel rod constraints were not violated. The study shows that independent of the fuel form (oxide or hydride) rods with (a) small diameters and moderate P/Ds or (b) large diameters and small P/Ds give the highest permissible burnups limited by the rod thermal-mechanical constraints. TRANSURANUS predicts that burnups of ∼74 MWd/kg U and ∼163 MWd/kg U (or ∼65.2 MWd/kg U oxide-equivalent) could be achieved for UO2 and UZrHx fuels, respectively. Furthermore, for each fuel type, changing the enrichment has only a negligible effect on the permissible burnup. The oxide rod performance is limited by internal pressure due to fission gas release, while the hydride fuel can be limited by excessive clad deformation in tension due to fuel swelling, unless the fuel rods will be designed to have a wider liquid metal filled gap. The analysis also indicates that designs featuring a relatively large number of fuel rods of relatively small diameters can achieve maximum burnup and provide maximum core power density because they allow the fuel rods to operate at moderate to low linear heat rates.  相似文献   

13.
Two UO2---Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which uses an empirical gas release model combined with a strongly burn-up dependent correction term, developed by the US Nuclear Regulatory Commission. The paper presents the experimental results and the code calculations. It is concluded that the model predictions are in reasonable agreement (within 15%) with the experimental results. No similar agreement could be obtained without the burn-up dependency of the release model.  相似文献   

14.
The Syrian Miniature Neutron Source Reactor (MNSR), a 30 kW, 89.8% HEU fueled (U-Al), went critical in March, 1996. By operating the reactor at nominal power for 2.5 h/day, the estimated core life is 10 years. This paper presents the results of fuel burn-up and depletion analysis of the MNSR fuel lattice using the ORIGEN 2 code. A one-group cross-section data base for the ORIGEN 2 computer code was developed for the Syrian MNSR research reactor. The ORIGEN 2 predicted burn-up dependent actinide compositions of MNSR spent fuel using the newly developed data base show a good agreement with the published results in the literature. In addition, the burn-up characteristics of MNSR spent fuel was analyzed with the new data base. Finally, to study the effect of burn-up on the reactivity, the microscopic cross-sections of the fission products calculated by the WlMS code (using the number densities of fission products generated by the ORIGEN 2 code as a function of burn-up time), were used as an input for the CITATION code calculations. The results contained in this paper could be used in performing criticality safety analysis and shielding calculations for the design of a spent fuel storage cask for the MNSR core.  相似文献   

15.
A simulated fuel specimen which was irradiated at the HANARO research reactor up to 3300 MWd/tU of a burn-up at the condition of 36 kW/m of a maximum linear power was studied by a shielded EPMA (Electron Probe Micro-Analyzer). In order to obtain an accurate analysis results, chemical and EPMA analyses were also performed on un-irradiated fresh simulated fuel, the results of which were compared with those of the irradiated simulated fuel. This study concentrated on the metallic precipitates of the irradiated simulated fuel specimen which contained lots of fission products. Among the several properties of the metallic precipitate, its size and composition were investigated. A large metallic inclusion was also observed in the irradiated simulated fuel, from which X-ray photographs were taken to analyze its properties.  相似文献   

16.
The objective of this study is to evaluate the hoop-directional mechanical properties comprising strength such as yield strength and ultimate tensile strength as well as mechanical ductility such as uniform elongation and total elongation. Therefore, in this paper, the ring tensile tests were performed in order to evaluate the mechanical properties of high burn-up fuel cladding under a hoop loading condition in a hot cell. The tests were performed with Zircaloy-4 nuclear fuel cladding whose burn-up is approximately 65,000 MWd/tU in the temperature range of room temperature to 800 °C. All the experiments were carried out at a constant strain rate of 0.01/s.On the basis of the ring tensile tests for a high burn-up Zircalay-4 cladding, the following conclusions were drawn. Firstly, the mechanical properties are abruptly degraded beyond 600 °C, which corresponds to a design-basis accident condition such as a RIA. Secondly, the un-irradiated fuel cladding showed ductile fracture behaviors such as 45° shear type fracture, cup and cone type fracture, cup and cup type fracture and chisel edge type fracture. While the high burn-up Zircalay-4 cladding showed a brittle fracture behavior even at the high temperatures (e.g. over 600 °C) which are achievable during a RIA. Thirdly, in the case of the high burn-up Zircalay-4 cladding, the strength, ductility and the energy to break are strongly dependent on the material property itself which are degraded by oxidation and hydriding during an operation rather than the temperature. Fourthly, hydride rim formation in the vicinity of metal-oxide interface can play an important role in the degradation of the mechanical properties for high burn-up fuel cladding.  相似文献   

17.
A benchmark exercise for thorium–plutonium fuel, based on experimental data, has been carried out. A thorium–plutonium oxide fuel rodlet was irradiated in a PWR for four consecutive cycles, to a burnup of about 37 MWd/kgHM. During the irradiation, the rodlet was inserted into a guide tube of a standard MOX fuel assembly. After the irradiation, the rod was subjected to several PIE measurements, including radiochemical analysis. Element concentrations and radial distributions in the rodlet, multiplication factors and distributions within the carrier assembly of burnup and power were calculated. Four participants in the study simulated the irradiation of the MOX fuel assemblies including the thorium–plutonium rodlet using their respective code systems; MCBurn, HELIOS, CASMO-5 and ECCO/ERANOS combined with TRAIN. The results of the simulations and the measured results of the radiochemical analysis were compared and found to be in fairly good agreement when the calculated results were calibrated to give the same burnup of the thorium–plutonium rodlet as that experimentally measured. Average concentrations of several minor actinides and fission products were well reproduced by all codes, to the extent that can be expected based on known uncertainties in the experimental setup and the cross section libraries. Calculated results which could not be confirmed by experimental measurement were compared and only two significant anomalies were found, which can probably be addressed by limited modifications of the codes.  相似文献   

18.
Codes for reactor core calculations use few-group cross sections (XS) which depend on local burnup, given in terms of the energy produced per fuel mass (MWd/kgHM). However, a certain burnup value can be reached under different spectral conditions depending on moderator density and other local parameters. Neglecting these spectral effects, i.e. applying the summary-burnup value only, can cause considerable errors in the calculated power density.  相似文献   

19.
The influence of high burn-up structured material on UO2 corrosion has been studied in an autoclave experiment. The experiment was conducted on spent fuel fragments with an average burn-up of 67 GWd/tHM. They were corroded in a simplified groundwater containing 33 mM dissolved H2 for 502 days. All redox sensitive elements were reduced. The reduction continued until a steady-state concentration was reached in the leachate for U at 1.5 × 10−10 M and for Pu at 7 × 10−11 M. The instant release of Cs during the first 7 days was determined to 3.4% of the total inventory. However, the Cs release stopped after release of 3.5%. It was shown that the high burn-up structure did not enhance fuel corrosion.  相似文献   

20.
Investigations of fuel behavior are carried out in close connection with experimental research, operation feedback and computational analyses. OECD NEA sets up the “International Fuel Performance Experiments (IFPE) database”, a public domain database on nuclear fuel performance experiments with the purpose of model development and code validation. The objective of the activity (performed in the framework of the IAEA CRP FUMEX-III project) is to investigate the pellet-clad interaction mechanism and the capability of TRANSURANUS code in simulating the phenomena, processes occurring in the fuel rod during the power ramps, with focus on the parameters influencing the cladding failures. The experimental database adopted is the Studsvik PWR Super-Ramp subprogram, part of the IFPE database, which consists of 28 pressurized water reactor fuel rods power ramped at burnup from 28 to 45 MWd/kgU. Relevant results by TRANSURANUS are presented in connection with the experimental evidences. Focus is given on the PCI/SCC failure, demonstrating that the failure threshold, available in TRANSURANUS, results conservative both in case of KWU and W rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号