首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper explores the potential use of a woven polypropylene textile for encapsulating stone columns and improving performance of a local soft soil in Warangal city of India. A series of axial load tests were performed on stone columns of various diameters and under various encapsulation conditions that include single and double layers and other combinations. Load carrying capacity of stone column increased twice its original capacity when encapsulated with different geofabric materials. Performance enhancement strongly correlated to the tensile strength of encasement material and encapsulation condition. In addition, the influence of lateral thrust on group of stone columns arranged in square and triangular patterns were investigated. Irrespective of the material used, lateral displacement reduced by half for encased stone columns. Apart from tensile strength of encasing material, the amount of material used for encasement in the form of additional encasement layer was found to be crucial. The cost of using the polypropylene encasing material is only a third of the commercial geotextiles; however, the performance is inferior to woven geotextiles but far superior to non-woven geotextiles.  相似文献   

2.
Geosynthetic-encased stone columns: Numerical evaluation   总被引:5,自引:0,他引:5  
Stone columns (or granular piles) are increasingly being used for ground improvement, particularly for flexible structures such as road embankments, oil storage tanks, etc. When the stone columns are installed in extremely soft soils, the lateral confinement offered by the surrounding soil may not be adequate to form the stone column. Consequently, the stone columns installed in such soils will not be able to develop the required load-bearing capacity. In such soils, the required lateral confinement can be induced by encasing the stone columns with a suitable geosynthetic. The encasement, besides increasing the strength and stiffness of the stone column, prevents the lateral squeezing of stones when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the qualitative and quantitative improvement in load capacity of the stone column by encasement through a comprehensive parametric study using the finite element analysis. It is found from the analyses that the encased stone columns have much higher load carrying capacities and undergo lesser compressions and lesser lateral bulging as compared to conventional stone columns. The results have shown that the lateral confining stresses developed in the stone columns are higher with encasement. The encasement at the top portion of the stone column up to twice the diameter of the column is found to be adequate in improving its load carrying capacity. As the stiffness of the encasement increases, the lateral stresses transferred to the surrounding soil are found to decrease. This phenomenon makes the load capacity of encased columns less dependent on the strength of the surrounding soil as compared to the ordinary stone columns.  相似文献   

3.
竖向土工加筋体对碎石桩承载变形影响的模型试验研究   总被引:1,自引:0,他引:1  
在碎石桩桩顶一定深度内包裹竖向土工加筋体形成筋箍碎石桩,能有效提高碎石桩的承载能力,控制复合地基沉降量。采用分级加载方式,设计并完成了两组较大比例室内模型试验,对比分析了筋箍碎石桩和传统碎石桩的承载变形特性,进而探讨了筋箍碎石桩的加筋机理和鼓胀变形模式,重点分析了竖向土工加筋体的应力应变特征。分析结果表明:竖向土工加筋体能有效约束碎石桩的侧向鼓胀,在微小侧向变形内提供足够的径向约束应力;筋箍碎石桩的最大鼓胀变形多发生于加筋体以下区域,其破坏模式与筋体材料、桩体、桩周土体及其相互作用和协调变形密切相关;筋箍碎石桩的桩顶和桩底桩土应力比均明显大于传统碎石桩,上部土工加筋体在提高桩体刚度的同时,可有效地将上部荷载传递至桩底较好土层。  相似文献   

4.
选用碎石、圆砾和砂3种填料,以及5种不同强度的聚丙烯土工编织布套筒,制备成15组尺寸为?300 mm×600mm,填料压实度?=0.9的土工织物散体桩,对桩体进行单轴压缩试验,以研究不同填料土工织物散体桩在轴向荷载作用下的强度特性。研究结果表明:不同填料桩体在单轴压缩下具有不同的破坏模式,碎石填料局部刺破编织布套筒形成较大破口,圆砾填料致套筒横向筋丝断裂、纵向筋丝分离,而砂填料致套筒横向筋丝断裂较均匀且无明显破口。桩体强度与筋材和填料强度均呈正相关关系,3种填料桩体轴向应力–应变曲线在加载初期因填料受到初始压密而略有上凹,而后近似线性增长至桩体强度,峰值强度后呈现应变软化现象;综合本文试验数据及前期所做的单轴、三轴压缩试验数据,修正了桩体强度理论计算公式,得到的桩体强度修正值与试验值吻合较好。  相似文献   

5.
In very soft soils, the bearing capacity of stone columns may not improve significantly due to very low confinement of the surrounding soil. Therefore, they may be reinforced with geosynthetics by using vertical encasement or horizontal layers. Very limited studies exist on horizontally reinforced stone columns (HRSCs). In this research, some large body laboratory tests have been performed on horizontally reinforced stone columns with diameters of 60, 80, and 100?mm and groups of stone columns with 60?mm diameter. Results show that the bearing capacity of stone columns increases by using horizontally reinforcing layers. Also, they reduce lateral bulging of stone columns by their frictional and interlocking effects with stone column aggregates. Finally, numerical analyses were carried out to study main affecting parameters on the bearing capacity of HRSCs. Numerical analysis results show that the bearing capacity increases considerably with increasing the number of horizontal layers and decreasing space between layers.  相似文献   

6.
为解决目前规范中缺乏超高强混凝土型钢组合柱设计方法和静力受压试验研究不够深入的问题,开展了5个轴心受压和4个偏心受压的立方体抗压强度为120 MPa超高强混凝土型钢长柱的静力试验,通过考察其破坏形态、轴力-挠度曲线、轴力-竖向位移曲线和轴力-应变曲线,研究了长细比、相对偏心距和箍筋间距对其静力性能的影响.试验结果表明:...  相似文献   

7.
Stone columns, which are frequently employed to stabilize the liquefiable soil, are susceptible to accumulation of soil particles. The progressive accumulation of the soil particles causes clogging of the stone column which decreases its drainage capacity. The stone column can be encased with geotextile to sustain its long term drainage function. The encasement prevents the movement of the soil particles into the stone pores. In the present paper, a mathematical model is presented to assess the filtration performance of the geotextile encasement to prevent the clogging. The filtration capacity of the geotextile is related to its maximum pore size, porosity and soil characteristics. It is observed that the encased stone column dissipates the excess pore pressure at a faster rate compared to the stone column without encasement. The peak maximum excess pore water pressure (Umax) is not significantly affected due to selection of the opening size of the geotextiles for single earthquake. However, the opening size can significantly affect the peak Umax value for multiple earthquakes. Depending on the capture coefficient of the stone column, the clogging can be fully prevented for higher hydraulic gradient if geotextile with maximum opening size in between D10 to D5 is used as encasement.  相似文献   

8.
Stone columns have been used to minimize the settlement of embankments on soft soils but their use in very soft soils can become challenging, partly because of the low confinement provided by the surrounding soil. Geosynthetic encased columns (GECs) have been successfully used to enhance to reduce settlements of embankments on soft soils. This paper describes an investigation on the performance of encased columns constructed on a very soft soil using different types of encasement (three woven geotextiles with different values of tensile stiffness) and different column fill materials (sand, gravel and recycled construction and demolition waste, RCDW). The results of load capacity tests conducted on large-scale models constructed to simulate the different types of GECs indicate that the displacement method adopted during column installation can lead to an enhanced shear strength in the smear zone that develops within the very soft soil. In addition, breakage of the column fill material was found to affect the load-settlement response of gravel and RCDW columns. Furthermore, the excess pore water pressure generated in the surrounding soil during installation, was found to remain limited to radial distances smaller than three times the GEC diameter.  相似文献   

9.
Geogrid encasement has recently been investigated to provide an alternative and perhaps stiffer option to the now established method of geotextile encased columns (GECs). To construct geogrid encasement, the geogrid is typically rolled into a sleeve and welded using a specialized welding frame. However, the process is unlikely to be economical for site construction and therefore an alternative method of encasement construction was investigated in this paper. The technique comprises overlapping the geogrid encasement by a nominal amount and relying on interlock between the stone aggregate and section of overlap to provide a level of fixity similar to welding. A series of small-scale tests were initially used to investigate the technique, followed by medium-scale compression tests using different geogrids and typical stone column aggregates. The results of testing indicate that the “method of overlap” provides a simple and effective method of encasement construction, providing a level of fixity similar to welding. A full circumference of overlap should generally be adopted to achieve adequate fixity. Biaxial geogrids are best suited to the technique, with increased encasement stiffness resulting in increased column capacity and column stiffness. Higher strength geogrids are also more robust, providing a greater resistance to cutting from pieces of angular crushed rock. Site trials are recommended for final confirmation of the technique.  相似文献   

10.
《Soils and Foundations》2007,47(5):873-885
Stone columns, one of the most commonly used soil improvement techniques, have been utilized worldwide to increase bearing capacity and reduce total and differential settlements of structures constructed on soft clay. Stone columns also act as vertical drains, thus speeding up the process of consolidation. However, the settlement of stabilised bed is not reduced in many situations for want of adequate lateral restraint. Encasing the stone column with a geogrid enhances the bearing capacity and reduces the settlement drastically without compromising its effect as a drain, unlike a pile. The behavior of the encased stone column stabilized bed is experimentally investigated and analysed numerically. In the numerical analysis, material behaviour is simulated using Soft Soil, Mohr Coulomb and Geogrid models for clay, stone material and encasement respectively and is validated with experimental results. The parametric study carried out on varying the L/D ratio (L = length of the column; D = diameter of the column) of column, stiffness of geogrid and angle of internal friction of stone material gives a better understanding of the physical performance of the encased stone column stabilized clay bed.  相似文献   

11.
Improvement of soft soils using geogrid encased stone columns   总被引:2,自引:0,他引:2  
In recent years, geotextile encasement has been used to extend the use of stone columns to extremely soft soils. Although the technique is now well established, little research has been undertaken on the use of other encasement materials such as geogrid. This paper discusses the results of a series of small-scale model column tests that were undertaken to investigate the behaviour of geogrid encased columns. The tests focused on studying the effect of varying the length of encasement and investigating whether a column that was partially encased with geogrid would behave similarly to a fully-encased column. In addition, isolated column behaviour was compared to group column behaviour. The results of partially encased column tests indicated a steady reduction in vertical strain with increasing encased length for both isolated columns and group columns. Bulging of the column was observed to occur directly beneath the base of the encasement. A significant increase in column stiffness and further reduction in column strain was observed for fully-encased columns, with strain reductions in the order of 80%. This range of performance may lend the techniques of partial and full geogrid encasement to a series of potential site applications.  相似文献   

12.
Geosynthetic-encased stone column (GESC) has been proven as an effective alternative to reinforcing soft soils. In this paper, a series of centrifuge model tests were conducted to investigate the performance of GESC-supported embankment over soft clay by varying the stiffness of encasement material. The enhancement in the performance of stone columns encased with geosynthetic materials was quantified by comparing the test with ordinary stone columns (OSCs) under identical test conditions. The test results reveal that by encasing stone columns with geosynthetic material, a significant reduction in the ground settlement, relatively faster dissipation of excess pore pressure and enhanced stress concentration ratio was noticed. Moreover, with the increase in the encasement stiffness from 450 kN/m to 3300 kN/m, the stress concentration ratio increased from 4 to 6.5, which signifies the importance of encasement stiffness. In addition, a relatively lower value of soil arching ratio observed for GESCs compared to OSCs indicate the formation of a relatively strong soil arch in the GESC-supported embankment. Interestingly, under embankment loading, GESCs fail by bending while OSCs fail by bulging. The stress reduction method can be used to calculate the settlement of GESC-supported embankment with larger stress reduction factor than that in the OSC-supported embankment. Finally, the limitation of the construction of the embankment at 1 g was addressed.  相似文献   

13.
为了研究型钢与部分外包混凝土的在拉力作用下的纵向剪力传递性能,对6个部分外包钢-混凝土组合构件进行了轴拉试验,对其破坏形态和荷载-滑移曲线进行了分析。试验中主要考虑了型钢与腹部混凝土的黏结长度、混凝土强度、栓钉连接件数量等影响因素。研究结果表明:部分外包钢-混凝土组合构件破坏形态主要表现为黏结破坏、混凝土压碎和栓钉剪断;轴拉试验和推出试验中无栓钉连接的部分外包型钢混凝土组合构件的黏结力均随着型钢与混凝土间的黏结长度的增加而增大;对于无栓钉和有栓钉组试件,轴拉试验和推出试验中型钢与混凝土间的受剪承载力均随着混凝土抗拉强度的增加而增大,且近似成线性关系;部分外包钢-混凝土组合构件的受剪承载力随栓钉数量的增加而增大;相较无栓钉组试件,采用2根栓钉连接和4根栓钉连接的轴拉试件,其受剪承载力分别可提高近100%和250%。  相似文献   

14.
提出了一种重载柱设计的模式,即型钢-方钢管自密实高强混凝土柱。该组合柱是在方钢管中填充自密实高强混凝土和型钢而形成。通过13根型钢-方钢管自密实高强混凝土短柱的轴心受压试验,研究了该组合柱的受力性能。试验结果表明自密实试件与经过振捣的试件的受力性能几乎没有差别;型钢的存在有效地延缓或抑制了高强混凝土中剪切裂缝的产生从而提高了构件的延性;混凝土强度、方钢管的宽厚比和型钢的用量对构件的强度和延性有着显著影响。最后给出了型钢-方钢管自密实高强混凝土轴心受压短柱强度承载力的计算公式,计算结果与试验结果吻合良好。  相似文献   

15.
高强箍筋高强混凝土短柱抗震性能试验研究   总被引:2,自引:0,他引:2  
为了研究高强箍筋约束高强混凝土短柱在地震作用下的抗震性能,采用建研式加载装置,通过14根高强混凝土短柱试件的低周反复加载试验,研究了高强箍筋约束高强混凝土短柱的破坏形态、滞回性能、骨架曲线、变形和延性、耗能能力以及高强箍筋的应力发挥水平和受剪承载力计算等,分析了轴压比、剪跨比、箍筋强度、箍筋间距、箍筋形式和混凝土强度等因素对短柱破坏形态、滞回性能和承载力的影响。结果表明:短柱破坏形态受设计参数的影响有剪切破坏和剪切黏结破坏两类;与普通强度箍筋混凝土短柱相比,高强箍筋高强混凝土短柱在节约材料的同时具有优越的抗震性能和抗倒塌能力;达到极限荷载后,箍筋的应变发展较快,高强箍筋的强度发挥充分,短柱的抗震性能明显改善;通过对高强箍筋应力取值进行适当修正,采用GB 50010-2010规范公式计算高强箍筋高强混凝土短柱的受剪承载力是可行的。  相似文献   

16.
17.
Deformation and consolidation around encased stone columns   总被引:1,自引:0,他引:1  
A new analytical solution is presented to study soft soil improvement by means of encased stone columns to reduce both settlement and consolidation time. The proposed solution aims to be a simple and useful tool for design. Only a unit cell, i.e. an end-bearing column and its surrounding soil, is modelled in axial symmetry under a rigid and uniform load. The soft soil is treated as an elastic material and the column as an elastic-plastic material using the Mohr-Coulomb yield criterion and a non-associated flow rule, with a constant dilatancy angle. An elasto-plastic behaviour is also considered for the encasement by means of a limit tensile strength. The solution is presented in a closed form and is directly usable in a spreadsheet. Parametric studies of the settlement reduction, stress concentration and consolidation time show the efficiency of column encasement, which is mainly ruled by the encasement stiffness compared to that of the soil. Column encasement is equally useful for common area replacement ratios but columns of smaller diameters are better confined. Furthermore, the applied load should be limited to prevent the encasement from reaching its tensile strength limit. A simplified formulation of the solution is developed assuming drained condition. The results are in agreement with numerical analyses.  相似文献   

18.
Since the initial conception of geosynthetic encased columns (GECs), exhaustion of column capacity due to vertical loads in bulging and punching failure modes were readily recognized. This lead to a vast majority of the available research on GECs to be about the behavior of columns under the action of vertical loads. Recently, two other likely and perhaps more dominant failure modes for granular columns namely, shear and bending failure modes, were identified. The purpose of this paper is to study the behavior of unit cells containing ordinary stone columns (OSCs) and GECs under static and cyclic lateral loads where shear failure of the column is imminent. 1-g physical tests are conducted with a novel apparatus, designated as Unit Cell Shear Device (UCSD), to model the behavior of the unit cells located close to the toe of an embankment where OSCs and GECs experience significant lateral loading. Overall failure envelope and strength parameters for GECs with varying reinforcement stiffnesses are quantified under static and cyclic lateral loading conditions. The distribution and magnitude of reinforcement strains in horizontal (hoop) and vertical direction of the columns are also considered.  相似文献   

19.
为了研究钢管混凝土组合柱的受剪机理及承载力,以剪跨比、箍筋形式、体积配箍率、轴压比和钢管尺寸为变化参数,设计了12个钢管高强混凝土组合柱进行受剪性能试验,分析组合柱的破坏过程及形态、荷载-位移曲线、荷载-应变曲线、变形以及承载力等受力性能的变化规律.研究表明:组合柱破坏形态受剪跨比和箍筋形式的影响显著,除剪跨比1.5的...  相似文献   

20.
This paper presents a set of systematic 2D and 3D finite element analyses that study the performance of groups of encased stone columns beneath a rigid footing. Those numerical analyses show that, if the area replacement ratio, i.e. area of the columns over area of the footing, and the ratio of encasement stiffness to column diameter are kept constant, the column arrangement (both number of columns and column position) has a small influence on the settlement reduction achieved with the treatment. For high encasement stiffnesses, placing the column near the footing edges may be slightly more beneficial reducing the settlement; on the contrary, the maximum hoop force at the encasement is notably higher. Based on the minor influence of column arrangement, this paper proposes a new simplified approach to study groups of encased stone columns, which involves converting all the columns of the group beneath the footing in just one central column with an equivalent area and encasement stiffness. This simplified model is used to conclude that, for settlement reduction and fully encased columns in a homogeneous soil, there is a column critical length of around two or three times the footing width. The critical length of the encasement for partially encased columns is slightly lower than that of the fully encased columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号