首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
The discharge capacity of a tunnel drainage system generally decreases with time because of the hydraulic deterioration of the geotextile filter. Hydraulic deterioration restricts groundwater flow into a tunnel and increases water pressure resulting in detrimental effects on the tunnel lining. Hydraulic deterioration of tunnel drainage system is unique in terms of clogging materials, deterioration mechanism, and flow conditions. Current studies and models investigating the clogging mechanism and hydraulic deterioration are not directly applicable to the geotextile filter of the tunnel drainage system. In this study, a theoretical model of the hydraulic deterioration of tunnel geotextile filter has been proposed considering the mechanical and hydraulic behavior of blinding, clogging and squeezing. A parametric study was carried out to evaluate the performance of the model. An experimental study has been conducted to investigate the clogging behavior of the tunnel drainage system and validate the theoretical model. Several types of clogging materials were selected: cement-leaching calcium oxide, calcium carbonate, iron oxide, and bentonite. Agglutinated clogging was mainly observed during the short-term testing. The findings suggest that the in-plane permeability of the geotextile filter decreased by approximately 90%. The proposed model corroborated the experimental results.  相似文献   

2.
Nonwoven geotextiles have been commonly used in filtration and drainage of geotechnical engineering works. This paper presents a study on the use of such materials in drainage and filtration systems of tailings dams. Different combinations of tailings and geotextiles were submitted to gradient ratio (GR) tests under confinement in the laboratory with varying values of stress levels and hydraulic gradients. The results of GR tests under confining stresses up to 2000 kPa are presented and discussed. The dimensions of the tailings particles entrapped in the geotextile specimens and those that piped through the geotextile were also assessed. Geotextile specimens from the drainage system of a tailings dam were exhumed for analyses, as part of the research programme. The results obtained showed that stress levels and the hydraulic gradients used in the tests influenced the behaviour of the system. Physical and microscopic analyses of the specimens tested showed greater geotextile impregnation by tailings particles in the field than in the laboratory. The overall performance of the geotextiles tested under laboratory conditions was satisfactory. However, in the field segregation of tailings particles and transport of fines in suspension can subject the filter to more complex and severe clogging mechanisms, not properly simulated in current standard testing procedures.  相似文献   

3.
武山尾矿坝无纺土工织物滤层化学淤堵问题初探   总被引:5,自引:0,他引:5  
土工织物作为滤层在尾矿坝排渗设施中已得到广泛应用,但有些尾矿坝遇到了土工织物淤堵问题。本文针对武山铜矿尾矿坝排渗系统中发生的土工织物淤堵问题,通过一系列试验研究对无纺土工织物化学淤堵问题进行了初步探讨。研究结果表明氢氧化铁凝胶在织物纤维上的附着是化学淤堵的主要机理,尾矿中含有充分多的细粒黄铁矿且滤层处于非饱和渗流带或饱和- 非饱和交替变化渗流带是土工织物发生严重化学淤堵的必要条件  相似文献   

4.
In this study, a coupled Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) method we used to investigate the hydraulic deterioration of a geotextile due to clogging in tunnel drainage systems. Initially, a framework was developed to generate and test a numerical representation of a typical non-woven geotextile. Following model validation, we carried out parametric analysis to examine the effect of fine content, crack angle, and groundwater inflow. The results showed a general trend of pressure increase associated with increasing both the crack angle and fine content. This increase was found to decay at larger crack angles and high content of fines. Interestingly, increasing groundwater inflow was found to had minimal effect on the final deposition of the clogging particles. Finally, an approximate semi-analytical model was developed to describe the pressure increase due to clogging. The model was able to provide a good match with the data obtained from the numerical analysis.  相似文献   

5.
Stone columns, which are frequently employed to stabilize the liquefiable soil, are susceptible to accumulation of soil particles. The progressive accumulation of the soil particles causes clogging of the stone column which decreases its drainage capacity. The stone column can be encased with geotextile to sustain its long term drainage function. The encasement prevents the movement of the soil particles into the stone pores. In the present paper, a mathematical model is presented to assess the filtration performance of the geotextile encasement to prevent the clogging. The filtration capacity of the geotextile is related to its maximum pore size, porosity and soil characteristics. It is observed that the encased stone column dissipates the excess pore pressure at a faster rate compared to the stone column without encasement. The peak maximum excess pore water pressure (Umax) is not significantly affected due to selection of the opening size of the geotextiles for single earthquake. However, the opening size can significantly affect the peak Umax value for multiple earthquakes. Depending on the capture coefficient of the stone column, the clogging can be fully prevented for higher hydraulic gradient if geotextile with maximum opening size in between D10 to D5 is used as encasement.  相似文献   

6.
A study on biological clogging of nonwoven geotextiles under leachate flow   总被引:1,自引:0,他引:1  
This paper presents results of long-term permittivity tests using leachate to evaluate biological clogging of nonwoven geotextiles. Three types of geotextiles with varying masses per unit area were used in the tests. The identification and quantification of microorganisms in the geotextile were carried out as well as microscopic investigations. The accuracies of semi-empirical models to evaluate the kinetics of bacteria growth and to correlate hydraulic properties and microbiological parameters were examined. Permittivity tests under increasing water heads were also performed on the geotextile samples already subjected to long-term leachate flow in order to evaluate the values of water heads required to wash the biofilms out of the geotextile pores. The results of the tests showed the marked reduction of geotextile permeability due to biological clogging and that the results of the predictions by semi-empirical methods were consistent with the biological mechanisms observed.  相似文献   

7.
This analyzes the effect of submersion in the formation of ochre biofilm in geotextile filters used in drainage systems. The chemical microbiological aspects involved in ochre formation and clogging of drainage systems are discussed. Clogging by ochre may be considered a major threat in the performance of filters and drainage systems. This process has been observed in the field and demonstrated in laboratory tests under well-controlled conditions. Oxygen is needed for ochre formation and is available at the water–air interface of the filters. If the filters are submerged, oxygen may also be available dissolved in the water, with higher concentrations close to the surface due to the diffusion process. Column filter tests with the introduction of iron bacteria under three different filter submersion conditions were carried out. Woven geotextile filters were used in all tests. Biofilm formation on the geotextile filters were evaluated through the analysis of EDS (Energy Dispersive X-ray detector) and scanning electron microscopy. Ochre formation was verified in all tests, confirming that ochre formation can occur even under submerged conditions. The formation of ochre biofilm decreased with the depth of the geotextile filter in relation to the water surface, following the expected reduction of available oxygen below the water surface.  相似文献   

8.
This study investigates the influence of clogging substances on pore characteristics and permeability of geotextile envelopes that were used for 3, 7 and 15 years in irrigated farmlands in Xinjiang region, which is arid and suffers from the soil salinity problem. Results show that the macropores (above 125 μm) of envelopes are evidently clogged, whereas the smaller pores less than 100 μm are still unblocked after operation. The permeability coefficients of geotextile envelopes after serving for 3 and 15 years are smaller than the minimum required permeability coefficients after clogging. The main chemical components of clogging substances in the geotextile envelope are silicon dioxide and calcium carbonate. Calcium carbonate content of the geotextile envelope is consistent with calcium carbonate content of soil. Chemical clogging susceptibility increases with the operation time of the subsurface drainage pipes. The ratio of O90 size of envelope material over d90 of soils (O90/d90) and saturation index (SI) can be used to assess the susceptibility of physical and chemical clogging respectively. This study provides a preliminary reference for estimating the clogging susceptibility of geotextile envelopes in arid areas.  相似文献   

9.
Wicking geotextile has been increasingly utilized in field projects to mitigate water-related roadway problems. The previous studies showed that the wicking geotextile could provide mechanical stabilization, serve as capillary barrier, and enhance lateral drainage. The wicking geotextile differentiates itself from non-wicking geotextiles by providing capillary or wicking drainage in unsaturated conditions, whereas non-wicking geotextiles only provide gravitational drainage under saturated or near-saturated conditions. Although the previous studies have demonstrated the benefits of soil water content reduction by the wicking drainage, it is not well understood how the wicking geotextile stabilization improves overall performance of aggregate bases over subgrade under traffic or cyclic loading. This paper presents an experimental study where large-scale cyclic plate loading tests were conducted under different conditions: (1) non-stabilized base, (2) non-wicking geotextile-stabilized base, and (3) wicking geotextile-stabilized base, over soft and moderate subgrades. Rainfall simulation was carried out for each test section. After each rainfall simulation, a drainage period was designed to allow water to drain from the section. The amounts of water applied and exiting from the test section were recorded and are compared. Cyclic loading was applied after each drainage period. The test results show that the combined hydraulic and mechanical stabilization effect by the wicking geotextile reduced the permanent deformation of the aggregate base over the subgrade as compared with the non-stabilized and non-wicking geotextile-stabilized sections.  相似文献   

10.
In geotextile filtration, the soil fines are either accumulated near the interface, clogged, or washed out, which primarily depends on the grain size distribution (GSD) of soil and the constriction size distribution (CSD) of geotextile. Also, the movement of fines significantly affects the flow capacity of geotextile. Currently, the retention requirement is satisfied based on representative grain and opening sizes, whereas the hydraulic conductivity and clogging requirements are satisfied considering the properties of virgin geotextile. This paper presents a probabilistic retention criterion considering the grain and constriction sizes as random variables. The influence of geotextile thickness is incorporated into the criterion by considering the number of geotextile constrictions in a filtration path. A theoretical approach to predict CSD is presented if the measured data is unavailable. For hydraulic conductivity and clogging requirements, a criterion is presented considering the expected partial clogging of geotextile, which is predicted based on the semi-analytical approach. The limit states for the developed criteria are evaluated based on the wide range of experimental data from the current study and published literature. The developed design criteria are applicable to internally stable and unstable soils, which offers an improvement in design compared to the existing criteria in practice.  相似文献   

11.
Geotextiles are routinely used in separation and filtration applications. Design of these systems is currently based on saturated properties of the geotextiles and the surrounding soils. However, in the field, soil and geotextile can be in an unsaturated state for much of their design life during which they are essentially hydraulically non-conductive. Periodic wetting and drying cycles can result in rapid and large changes in hydraulic performance of soil–geotextile systems. The writers have reported the results from physical water infiltration tests on sand columns with and without a geotextile inclusion. The geotextile inclusions were installed in new and modified states to simulate the influence of clogging due to fines and to broaden the range of hydraulic properties of the geotextiles in the physical tests. This paper reports the results of numerical simulations that were undertaken to reproduce the physical tests and strategies adopted to adjust soil and geotextile properties from independent laboratory tests to improve the agreement between numerical and physical test results. For example the paper shows that the hydraulic conductivity function of the geotextile must be reduced by up to two orders of magnitude to give acceptable agreement. The lower hydraulic conductivity is believed to be due to soil intrusion that is not captured in conventional laboratory permeability tests. The calibrated numerical model is used to investigate the influence of geotextile and soil hydraulic conductivity and thickness as well as height of ponded water at the surface on wetting front advance below the geotextile and potential ponding of water above the geotextile due to a capillary break mechanism. A simple analytical model is also developed that predicts the maximum ponding height of water above the geotextile based on two-layer saturated media and 1-D steady state flow assumptions. The analytical model is used to generate a design chart to select geotextiles to minimize potential ponding of water above the geotextile. Ponding can lead to lateral flow of water along the geotextile in reinforced wall, slope, embankment and road base applications.  相似文献   

12.
Fine fraction filtration test to assess geotextile filter performance   总被引:1,自引:0,他引:1  
The proper design of the openings of a geotextile filter requires a balance between providing upstream soil particle retention and avoiding excessive geotextile clogging. While this balance can be reasonably achieved quite well for most soil types and hydraulic conditions, it is different when the flowing liquid is turbid (containing a large amount of suspended particles) and/or under high, or dynamic, hydraulic gradients. This paper presents a test method to assess the behavior of individual soil particles in a slurry form as they approach, encounter and interact with a geotextile filter.

The paper describes the concept and details of the test method, called the fine fraction filtration (F3) test, and presents data on five different geotextiles which were evaluated using three different soil types. It was seen that soils with particle sizes larger than the geotextile's opening structure can build a stable upstream network; soil with particle sizes smaller than the geotextile's opening structure can pass through the geotextile; and intermediate particle size conditions can give rise to excessive clogging. An additional series of tests were conducted using the same five geotextile filters but now using a pre-placed upstream soil filter above the geotextiles. Clogging conditions generally occurred albeit within the soil column rather than within the geotextile.

The F3 test is felt to be a meaningful test for those conditions where the upstream soil particles are not in intimate contact with the geotextile filter. In such cases, the test method can probably be considered to be a performance test. For other, more typical soil placement conditions, the test method can be considered to be a very challenging indext test.  相似文献   


13.
Design of non-woven geotextiles for coal refuse filtration   总被引:1,自引:0,他引:1  
This paper presents research findings on grain size distribution changes of coal refuse affecting the design of non-woven geotextiles used as filters in rock drains at coal waste impoundments. The research involved performing hydraulic conductivity tests on refuse - geotextile filters followed by grain size distribution tests. Data was evaluated for geotextile filter retention, permittivity, and clogging potential requirements as published by the U.S. Mine Safety and Health Administration’s Second Edition, “Engineering and Design Manual Coal Refuse Disposal Facilities”.Key findings indicate that refuse particles undergo slaking and aggregation which change the initial grain size distribution. Grading envelopes were developed and indicate that particle size zones influence the geotextile design parameters for retention, filtration, and clogging. The clogging criteria do not appear to be easily satisfied by the typical ranges of coarse coal refuse, at pre- and post-compaction grain size, for compatibility with non-woven geotextiles having an AOS = 0.212 mm.Conclusions impacting the specification and field installation of geotextiles include: i) post grain size distribution tests are suggested to be performed on specimens and at all compaction levels to observe changes in key indices of D85 and D15 for meeting retention and clogging criteria requirements; ii) the evaluation of the initial refuse stability indicate that at the low compaction energy conditions, which have mobile fines and high Cu values, are initially unstable with regards to their internal soil gradation; and iii) construction of geotextile wrapped drains is preferred to be made in pre-compacted refuse lifts. This condition is beneficial because the filter becomes more stable for retention and permeability; however clogging is still a concern.  相似文献   

14.
Geotextiles are often subject to different load types in their filtration applications. The load action can cause changes in soil density, geotextile stretching and flow interaction at the soil-geotextile interface. All of these load-induced changes to a geotextile may affect the filtration behaviour of the soil-geotextile system. The impact of load type on the filtration behaviour of soil-nonwoven geotextile combinations has been studied through a series of tests using an experimental apparatus designed specially for the laboratory tests. In these tests, the soil-geotextile combination was fabricated by inserting a piece of nonwoven geotextile between a 50 mm thick soil layer and a layer of steel beads. Two chemical-bonded nonwoven geotextiles were employed in this study. One of the three load types, namely sustained, pulsatory and a combination of both was applied to the combination prior to each filtration test. The frequency of the pulsatory load was 0.1 Hz and a total of 5000 cycles of repeated load applied to the combination for each load type test. After applying this specific type of load on a soil-geotextile combination, water was allowed to flow down through the combination from the soil into a drainage layer set at various hydraulic gradients. The flow rates corresponding to elapsed times were measured and the average hydraulic conductivity value was extracted by using Darcy’s law to characterize the filtration performance of the entire soil-geotextile combination. Variations in the average hydraulic conductivity value with respect to the soil void ratio, magnitude and type of normal load were examined.The experimental results revealed that the void ratio of soil decreased with the increase of total load. Although two parent geotextiles under study, namely GT1 and GT2, have similar filtration characteristics, soil-geotextile combinations composed of these two geotextiles exhibited different filtration responses to the normal load. Soil-GT1 combinations exhibited a normal relationship between the average hydraulic conductivity and the normal load applied; the average hydraulic conductivity increased with an increase in the total load. Soil-GT2 combinations exhibited different load-dependent responses to a normal load with the average hydraulic conductivity depending on the magnitude and type of load. Such load-dependent hydraulic conductivity changes are attributed mainly to the geotextile in-plane strain and the pumping action in the combination.  相似文献   

15.
砂土介质中微生物诱导封堵试验研究   总被引:1,自引:0,他引:1  
土木水利工程中的安全隐患与工程对环境造成的不良影响中,相当一部分与渗漏问题有关。微生物封堵技术的最新研究表明,为岩土中微生物提供合适的营养物质,可以在相对较短时间内产生有效的微生物成因封堵。对带有渗漏孔的2个砂柱进行微生物诱导封堵试验,2个砂柱中分别添加马铃薯液和葡萄糖溶液,并与通水的砂柱作对比。添加马铃薯液的砂柱,在营养液充足的情况下3周内透水能力降低到原来的1/50,而且封堵发生在渗漏处。添加葡萄糖溶液的砂柱,透水能力未明显改变。添加葡萄糖溶液的砂柱改添马铃薯液后,渗漏处同样被封堵。采用加大水头的方法测试了封堵稳定程度,在渗流系统的水力坡降由0.267加大到1.067的过程中,封堵最终失效。试验表明,砂土中微生物诱导封堵技术能够将渗漏源探查和封堵合二为一,且在入水口水头变大的情况下仍能保持稳定。  相似文献   

16.
The effect of non-woven geotextile reinforcement on the stability and deformation of two clay test embankments is examined based on their performance for about 3 years for the first embankment and about years for the other. Horizontal planar sheets of a non-woven geotextile are expected to work in three ways: for compaction control; for drainage; for tensile reinforcement. The degree of stability of the steep slopes of the test embankments decreased during heavy rainfall. It is found that the use of non-woven geotextile reinforcement may effectively improve embankment performance. Only the stability analysis in terms of effective stresses can explain the performance of the test embankments. The horizontal creep deformation of the embankments during 2–3 years, which is partly attributed to the creep deformation of the non-woven geotextile, was found to be small. The results of both laboratory bearing capacity tests of a strip footing on a model sand ground reinforced with the non-woven geotextile and plane strain compression tests on sand specimens reinforced with the non-woven geotextile show that the non-woven geotextile gives tensile reinforcement to soils.  相似文献   

17.
A new type of woven geotextile, referred to as wicking geotextile, was developed and introduced to the market. Since this wicking geotextile consists of wicking fibers, they can wick water out from unsaturated soils in a pavement structure thus resulting in an increase of soil resilient modulus and enhance performance of roadways. In this study, a physical model test was developed to evaluate the effectiveness of the wicking geotextile in soil moisture reduction for roadway applications. A test box with a dimension of 1041 mm in length, 686 mm in width, and 584 mm in height was used in this study. Two HDPE plastic panels were used to separate the box into two sections, one containing a dehumidifier and the other backfilled with soil. The dehumidifier was adopted to collect the water, which was wicked out from the soil by the wicking geotextile and evaporated into air. Test results show that (1) the wicking geotextile wicked water out from the soil even at the moisture content close to the optimum moisture content and (2) the comparison of soil moisture contents before and after rainfall demonstrated that the wicking geotextile maintained the soil moisture contents after rainfall close to those before rainfall and had an effective distance for the soil moisture reduction.  相似文献   

18.
This paper focuses on the effects of chemical precipitation on the permeability of geotextile envelopes for a subsurface drainage system in arid areas by conducting precipitation experiments of the geotextile in static or flowing solution. The results show that the precipitation process is not significantly promoted or inhibited by the network structure of geotextile. The precipitates in the form of rhombus wrap around the fiber surface. The number of geotextile pores with the smaller diameters decreases significantly after precipitation experiments. As the increase of the area density of precipitates (ΔR), the variation of the pore area (ΔS) and the variation of permeability coefficient (ΔK) of the geotextile decrease rapidly at first and then slowly. The ΔK and ΔS VS ΔR data were best fitted with logarithmic trend line. This study provides a preliminary reference for quantifying the chemical clogging process of geotextile envelopes in arid areas.  相似文献   

19.
刘胜  王媛  冯迪 《岩土工程学报》1979,41(12):2360-2366
尾矿库中排渗设施的淤堵是常见的现象,也是影响其安全的重要因素。为提高排渗管的排渗能力和抗淤堵性能,开发了一种新型复合排渗管,新型复合排渗管在土工布和排渗花管之间增加了一层格构网。通过室内模型试验,研究格构网的结构和花管开孔率对新型复合排渗管排渗特征的影响,分析了新型复合排渗管的抗淤堵性能,揭示了新型复合排渗管的排渗机理。试验结果表明:外包格构网增加了排渗管的等效开孔面积,优化了排渗管的排渗路径,提高了排渗管的排渗能力。随着花管开孔率的增加,外包格构网对排渗管排渗能力的影响减小。外包格构网提高了排渗管的抗淤堵能力,随着土工布的淤堵,传统外包土工布排渗管和新型复合排渗管的排渗量均有所降低,传统外包土工布排渗管排渗量降低的程度更大。当单向连通格构网的连通方向与排渗管的纵向方向有夹角时,排渗管的排渗能力不增反减。使用单向连通格构网时,须保证格构网的连通方向与排渗管的纵向方向一致。  相似文献   

20.
Geotextiles have been widely used in soil structures for separation, filtration, reinforcing, and drainage. They are often used to provide reinforcement and drainage for retaining walls and embankments. It has been reported, however, that geotextiles may not drain water as effectively as was initially expected. In this study, published data on the hydraulic properties of unsaturated geotextiles are compiled and analyzed in order to highlight the hydraulic characteristics of unsaturated geotextiles.

The application of the van Genuchten equations originally developed for the water characteristic curve and the hydraulic conductivity curve of unsaturated soil to unsaturated geotextiles is then examined and discussed. Finally, the drainage from a one-dimensional sand column having a horizontal geotextile layer was analyzed using the finite element method and the van Genuchten equations to assess the utility of this procedure for further study of unsaturated/saturated water flow within the soil–geotextile system.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号