首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, advancement in epoxy/graphene oxide composites is presented. These materials are comprised of graphene oxide (GO) as filler (carbon-based material, thermodynamically stable, two-dimensional, planar and layered structure). Due to improved properties (mechanical response, low density, electrical resistance, and thermal stability), epoxy resins are used in several applications. Graphene oxide proposes unique properties to epoxy composites as high surface area, thermal and electrical conductivity as well as mechanical and barrier properties, relative to neat matrix. The corresponding significance of epoxy/GO-based materials, related challenges, and potential exploitation regarding technical applications (aerospace, gas sensor, electronic devices, etc.) have been overviewed.  相似文献   

2.
The outstanding properties of graphene materials rely on an exceptional two-dimensional honeycombed lattice. The lattice allows for electrical, thermal, and mechanical reinforcement effects when applied to the ceramic matrix. The biocompatibility of the material allows for providing multifunctional bioceramics applications. However, the potential of graphene lies in its ability to be homogenously distributed as part of a ceramic matrix. Therefore, appropriate processing techniques are important for attaining desired graphene ceramic properties applicable for regenerative biomedical purposes. This article provides an inclusive review of the current knowledge of advanced graphene-based ceramics for bone regenerative engineering. In this review, the opportunities and challenges in utilizing graphene materials in combination with ceramics suitable for applications in load-bearing bone defects are discussed.  相似文献   

3.
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.  相似文献   

4.
Won Ho Jo 《Polymer International》2015,64(12):1676-1684
As ‘flexibility’ has emerged as an important issue in next‐generation electronics, many efforts to find new classes of materials have been devoted to realizing stretchable, bendable and foldable electronic devices. For these devices to be realized, graphene has been considered as one of the most promising candidates for flexible electrodes due to its extraordinary electrical, optical and mechanical properties. Particularly, recent developments in the fabrication and modification of graphene point to a bright future for graphene electrodes in flexible electronics. This mini‐review summarizes the recent progress in graphene films as flexible electrodes for various applications such as solar cells, organic light‐emitting diodes, touchscreens, transistors and supercapacitors. © 2015 Society of Chemical Industry  相似文献   

5.
Polymer-carbon nanocomposites incorporate the exceptional properties of both the polymer matrices, such as low cost and simple processing, with the distinctive features of the carbon-based fillers, such as high electrical and thermal conductivities, and excellent mechanical properties. Various fillers like carbon black (CB), graphite, expanded graphite (EG), and carbon nanotubes (CNTs) are being used to produce materials with advanced properties. However, at high filler loading, these filler materials have some major challenges such as filler agglomeration. Recently, graphene has gained increased interest as an alternative filler to produce polymer nanocomposites with advanced characteristics. Thermosetting polymer composites with graphene fillers are being considered for multiple applications and are a subject of interest for researchers because of enhanced properties like excellent corrosion resistance and low density. This review outlines studies to improve the mechanical, electrical, and thermal properties of thermoset/graphene composites.  相似文献   

6.
Successful isolation of single-layer graphene, the two-dimensional allotrope of carbon from graphite, has fuelled a lot of interest in exploring the feasibility of using it for fabrication of various electronic devices, particularly because of its exceptional electronic properties. Graphene is poised to save Moore's law by acting as a successor of silicon-based electronics. This article reviews the success story of this allotrope with a focus on the structure, properties and preparation of graphene as well as its various device applications.  相似文献   

7.
Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.  相似文献   

8.
翟倩楠  冯树波 《化工进展》2020,39(10):4061-4072
石墨烯具有卓越的力学、电学、热学和阻隔性能,但疏水性、生物不相容性等缺点限制了其在诸多方面的应用。氧化石墨烯(GO)为石墨烯的衍生物,是一种新型的碳材料,边缘处具有羧酸官能团并且其表面含有羟基和环氧基团,具有良好的分散性、双亲性、生物相容性等性能,被视当代最具有发展前景的碳材料之一。本文简述了氧化石墨烯的结构模型、制备方法和官能团可控氧化石墨烯的制备,介绍了氧化石墨烯的性能和的应用进展,分析了氧化石墨烯在制备和应用方面的一些不足。最后,阐述了石墨烯未来面临的挑战以及潜在的发展前景。  相似文献   

9.
Rapid technological advancements in flexible nanoelectronics have fueled the need for high-performance materials with advanced structural architectures and superior properties. In this regard, conducting polymer nanocomposites are at the forefront of current innovative research owing to their excellent properties. Among these sets of unique materials, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS) nanocomposites continue to pave the way in several applications including those entailing thermoelectricity, transparent electrodes, photovoltaics, technical coatings, lighting, sensing, bioelectronics, hole transport layers, interconnectors, electroactive layers, and motion-sensing conductors. The versatility and intriguing properties of these composites, particularly with 2D nanomaterials, have garnered significant attention from academia as well as industry. Therefore, in this review, the latest developments in PEDOT:PSS nanocomposites with graphene and its derivatives are focused on. First, the synthesis and fabrication of PEDOT:PSS nanocomposites with emphasis on recent techniques developed to overcome the challenges associated with direct production is discussed. Thereafter, the characterization and thermoelectric properties of the materials are explained. This provides detailed insights into the characteristic features of various nanocomposites and the influence of individual nanoparticles in the PEDOT:PSS matrix. Then, a conclusion, including a critical summary of the extensive applications of the PEDOT:PSS/graphene nanocomposites for electrochemical, electrostatic, optoelectronic, and thermoelectric devices, is provided.  相似文献   

10.
Due to fascinating electronic properties and great potential in various applications, graphene has attracted great interest. Recently, much work have focused on the synthesis of different sizes and properties of graphene or graphene oxides (GOs), for example, graphene nanoribbons, nanosized graphene pieces, and nanosized triangular and hexagonal graphene sheets terminated by zigzag edges. Herein, we have demonstrated a widely available approach to fabricate the nanoscale GO pieces by directly solution-phase cutting a large-area GO sheet into nanoscale pieces via spontaneous redox reactions at room temperature. In this process, GO acts with dual functions as a model and a reducing reagent. With a typical example of silver ions, we have investigated in detail the influence of the reaction time and concentration of metal ions on yield and size of nanoscale GO pieces. Moreover, we also obtain Ag nanoparticle coating on the GO surface. Finally, a possible mechanism is suggested to explain the formation of nanoscale GO pieces.  相似文献   

11.
2D graphene with high quality holds great promise in improving the performance of the hydrogels owing to its exceptional electronic, thermal, and mechanical properties. However, the structure defects existed in graphene restrict its further applications. Herein, a simple and green method of fabricating defect‐free graphene nanosheets with the assistance of supercritical carbon dioxide (SC CO2) is designed. The graphene nanosheets directly assemble with acrylic acid monomer and clay, and a flexible semitransparent hydrogel is fabricated. Benefiting from the excellent properties of the defect‐free graphene, the hydrogel exhibits the high mechanical performance, superfast self‐healing capability, excellent conductivity, and super photothermal conversion efficiency. According to the advantages above, the graphene/poly(acrylic acid)/clay hydrogels can be used for intelligent sensors for disease diagnosis, artificial electronic skin, and military stealth materials in the near future.  相似文献   

12.
Currently, there is great interest in graphene‐based devices and applications because graphene has unique electronic and material properties, which can lead to enhanced material performance. Graphene may be used in a wide variety of potential applications from next‐generation transistors to lightweight and high‐strength polymeric composite materials. Graphene, which has atomic thickness and two‐dimensional sizes in the tens of micrometer range or larger, has also been considered a promising nanomaterial in gas‐ or liquid‐barrier applications because perfect graphene sheets do not allow diffusion of small gases or liquids through its plane. Recent molecular simulations and experiments have demonstrated that graphene and its derivatives can be used for barrier applications. In general, graphene and its derivatives can be applied via two major routes for barrier polymer applications. One is the transfer or coating of few‐layered, ultrathin graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), on polymeric substrates. The other is the incorporation of fully exfoliated GO or rGO nanosheets into the polymeric matrix. In this article, we review the state‐of‐the‐art research on the use of graphene, GO, and rGO for barrier applications, including few‐layered graphene or its derivatives in coated polymeric films and polymer nanocomposites consisting of chemically exfoliated GO and rGO nanosheets, and their gas‐barrier properties. As compared to other nanomaterials being used for barrier applications, the advantages and current limitations are discussed to highlight challenging issues for future research and the potential applications of graphene/polymer, GO/polymer, and rGO/polymer composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39628.  相似文献   

13.
Self‐healable hydrogels are promising soft materials with great potential in biomedical applications due to their autonomous self‐repairing capability. Although many attempts are made to develop new hydrogels with good self‐healing performance, to integrate this characteristic along with other responsive multifunctions into one hydrogel still remains difficult. Here, a self‐healable hybrid supramolecular hydrogel (HSH) with tunable bioadhesive and stimuli‐responsive properties is reported. The strategy is imparting graphene oxide (GO) nanosheets and quadruple hydrogen bonding ureido‐pyrimidinone (UPy) moieties into a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) polymer matrix. The obtained GO–HSH hydrogel shows rapid self‐healing behavior and good adhesion to various surfaces from synthetic materials to biological tissue. In addition, doxorubicin hydrochloride (DOX) release profiles reveal the dual thermo‐ and pH‐responsiveness of the GO–HSH hydrogel. The DOX‐loaded hydrogel can further directly adhere to titanium substrate, and the released DOX from this thin hydrogel coating remains biologically active and has high capability to kill tumor cells.  相似文献   

14.
A long-standing manufactured and most frequently used resin is phenol-formaldehyde resin, which has currently reached new horizons by incorporating nano reinforcements, even at lower loadings. Nanostructured materials, particularly graphene, have gained considerable interest in recent years because of their fascinating characteristics. Herein, this study explores for the first time the potential of prepared graphene oxide (GnO) as an effective formaldehyde scavenger in the development of plywood panels containing PF resins. The addition of 1% of GnO to the system resulted in a significant improvements in the mechanical properties by more than 45% in the shear strength (SS), 35% in modulus of elasticity, and 25% in modulus of rupture when compared with the reference panel. While the moisture resistance of panels were found to remarkably enhanced showing an increase in SS by 25% and 37% After 24 h in cold water (20°C) and 12 h of immersion in boiling water, respectively. The results also demonstrated that GnO exhibited exceptional formaldehyde capture efficiency, surpassing 60% reduction compared with the control. This innovative research not only unveils the novel potential of GnO in improving the performance of PF resins but also ushers in a new way of developing eco-friendly wood-based materials.  相似文献   

15.
The study of carbon-based hybrid nanostructures is an emerging field of current research. In particular, photo-active molecules have been shown to considerably influence optical properties of carbon nanotubes suggesting realization of molecular switches. Here, we focus on the qualitative nature of molecule–substrate coupling within carbon-based hybrid nanostructures including nanoribbons and graphene. Our theoretical approach is based on density-matrix formalism and predicts a molecule-induced splitting of the pristine spectral resonances combined with a considerable spectral shift. Both effects strongly depend on the electronic bandstructure of the substrate. Furthermore, we investigate the impact of the substrate dimension on the coupling by increasing the width of nanoribbons from the very narrow up to graphene. Our calculations reveal a clear increase of the optical absorption of graphene in the vicinity of the Dirac point and a peak broadening at the saddle point due to the appearance of a high-energy shoulder. Our results give new insights into the molecule–substrate coupling and can guide future experiments towards the realization of tailored hybrid materials with desired optical properties.  相似文献   

16.
The latest trend in the direction of miniaturized portable electronic devices has brought up necessitate for rechargeable energy sources. Among the various non conventional energy devices, the supercapacitor is the promising candidate for gleaning the energy. Supercapacitor, as a new energy device that colligates the gap between conventional capacitors and batteries, it has attracted more attention due to its high power density and long cycle life. Many researchers work on, synthesizing new electrode material for the development of supercapacitor. The electrode material possesses salient structure and electrochemical properties exhibit the efficient performance of the supercapacitor. Graphene has high carrier mobility, thermal conductivity, elasticity and stiffness and also has a theoretical specific capacitance of 2630 m2g??1 corresponds to a specific capacitance of 550 Fg??1. This article summarizes and reviews the electrochemical performance and applications of various graphene composite materials such as graphene/polyaniline, graphene/polypyrrole, graphene/metal oxide, graphene/activated carbon, graphene/carbon nanotube as an electrode materials towards highly efficient supercapacitors and also dealt with symmetric, asymmetric and hybrid nature of the graphene based supercapacitor.  相似文献   

17.
Cui X  Zhang C  Hao R  Hou Y 《Nanoscale》2011,3(5):2118-2126
Graphene has attracted intense interest due to its exceptional physical and chemical properties as well as its wide potential applications. The processability and stability of this two-dimensional material in a variety of solvents have been the prerequisites for its functionalization, which will generate more interesting properties for further applications. In this mini review, we present and discuss the current status of liquid-phase exfoliation of graphene from various types of graphite, followed by a topical summarization of recent progress in the functionalization and applications of graphene.  相似文献   

18.
Sequence-specific nucleic acids exhibiting selective recognition properties towards low-molecular-weight substrates and macromolecules (aptamers) find growing interest as functional biopolymers for analysis, medical applications such as imaging, drug delivery and even therapeutic agents, nanotechnology, material science and more. The present perspective article introduces a glossary of examples for diverse applications of aptamers mainly originated from our laboratory. These include the introduction of aptamer-functionalized nanomaterials such as graphene oxide, Ag nanoclusters and semiconductor quantum dots as functional hybrid nanomaterials for optical sensing of target analytes. The use of aptamer-functionalized DNA tetrahedra nanostructures for multiplex analysis and aptamer-loaded metal-organic framework nanoparticles acting as sense-and-treat are introduced. Aptamer-functionalized nano and microcarriers are presented as stimuli-responsive hybrid drug carriers for controlled and targeted drug release, including aptamer-functionalized SiO2 nanoparticles, carbon dots, metal-organic frameworks and microcapsules. A further application of aptamers involves the conjugation of aptamers to catalytic units as a means to mimic enzyme functions “nucleoapzymes”. In addition, the formation and dissociation of aptamer-ligand complexes are applied to develop mechanical molecular devices and to switch nanostructures such as origami scaffolds. Finally, the article discusses future challenges in applying aptamers in material science, nanotechnology and catalysis.  相似文献   

19.
孔玥  黄燕山  罗宇  韩生 《化工进展》2021,40(9):5118-5131
石墨烯具有独特的二维结构、较大的理论比表面积、高载流子迁移率、高杨氏模量以及高热导率等特性,一直以来被视为新能源转换与存储领域的潜在应用材料。这些优势使其可以与一种或多种高活性的无机/有机材料通过共价键/非共价键进行复合,并通过协同效应来改善材料自身的缺陷,实现材料的性能最优化,进而拓展了其应用范围。因此,如何设计并合成具有一定功能作用的石墨烯基复合材料,构筑新型石墨烯结构,满足能源及其相关领域对于材料相关性质的要求,成为石墨烯材料领域的研究热点方向之一。本文综述了近年来石墨烯基复合材料的设计思路及该类材料在新能源转换与存储领域上的应用现状,并对其在各领域存在的关键问题进行了总结。最后,对石墨烯在各领域今后的研究和发展方向进行了展望。  相似文献   

20.
An increasing number of new strategies for skin tissue engineering have been developed with the potential to mimic the biological properties of native tissue with a high degree of complexity, flexibility, and reproducibility. In this study, decellularized tissue (DT) was prepared from the bovine heart by using chemical treatments. However, the mechanical properties of the DT constructs were poorer than the extra cellular matrix of the skin tissue. To overcome this challenge, hybrid scaffolds of DT and graphene oxide (GO) were developed and the effects of the GO concentration on the morphology, pore size, porosity, mechanical strength, and water uptake capacity of the samples were evaluated. Moreover, the biocompatibility of hybrid scaffolds was studied by Live/Dead staining. The results show that a hybrid scaffold incorporating 3 % graphene oxide improved the mechanical strength and cell viability by ~25 % in comparison to the DT scaffolds. Cell viability results confirmed that the porous scaffolds could support cell adhesion, proliferation, and cell activity for 7 days. This study provides new insight into and opportunities for using graphene-based materials to develop biomimetic constructs for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号